Abstract:
PROBLEM TO BE SOLVED: To provide a manufacturing method of a cathode substrate, capable of forming an electron emission source in a simple method, increasing adhesive force between the electron emission source and the substrate, and carrying out electron emission without any special surface treatment, and also to provide a flat panel display device including the cathode substrate manufactured by the method. SOLUTION: The manufacturing method of the cathode substrate includes a process of forming a cathode electrode 3 on the substrate 1, a process of forming a conductive layer 5 by coating a conductive composition containing an Si-containing matter on the cathode electrode 3, and a process of forming the electron emission source 7 by coating an electron emission source composition containing carbon nanotube on the conductive layer. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a thermionic cathode in which sufficient conductivity is obtained from the starting time at room temperature, and which is capable of efficient heating and thermionic emission and has a long life. SOLUTION: This cathode is provided with an encapsulated tube 9 in which discharge gas 11 is encapsulated, a fluorescent film 10 applied on the inner wall of the encapsulated tube 9, and a pair of discharge electrodes arranged at both ends of the encapsulated tube 9. The discharge electrodes are provided with insulating substrates 7a, and wide forbidden band semiconductor layers 1a on the insulating substrates 7a. Contact films 23a, 24a are formed on the surface of the wide forbidden band semiconductor layers 1a. Stem reeds 21a, 22a are connected to the wide forbidden band semiconductor layers 1a via the contact films 23a, 24a. The stem reeds 21a, 22a are respectively contacted to backsides of the insulating substrates 7a opposed to the contact films 23a, 24a, and pinch like a spring and retain from both sides a laminated structure composed of the insulating substrates 7a and the wide forbidden band semiconductor layers 1a. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
Es wird eine Metallstrahlröntgenröhre vorgeschlagen, die weniger als konventionelle Röhren vom Problem der Leistungsdichte im Auftreffpunkt des Elektronenstrahls auf der Anodenkomponente betroffen sind. Die Metallstrahlröntgenröhre stellt hierzu als Anodenkomponente (7) einen soweit dünnen Metallstrahl (6) zur Verfügung, dass durch diesen Metallstrahl (6) ein darauf auftreffender Elektronenstrahl (4) nur teilweise abgebremst wird. Desweiteren ist der Metallstrahl (6) der Anodenkomponente (7) wenigstens in einem einzigen zweiten, relativ gut elektronendurchlässigen und wärmeabsorbierenden Material (13) eingebettet oder darin aufgelöst.
Abstract:
Die Erfindung betrifft eine Entladungslampe mit einem Entladungsgefäß (1), in dem eine Kathode (5) und eine Anode (4) in der Röhrenachsrichtung des Entladungsgefäßes (1) gegenüberliegend angeordnet sind, wobei die Kathode (5) aus einem Material gebildet ist, bei dem ein Grundstoff aus metallischem Wolfram ein Lanthanoxid und ein Zirkoniumoxid enthält. Im Kathoden-Grundstoff aus metallischem Wolfram ist zudem Kohlenstoff in Form einer festen Lösung vorhanden.
Abstract:
A carbon film used for a field emission cathode comprises a layer of thin carbon film on a substrate. With 244 nm and 2-7 mW excitation, and within the wave number from 1100 to 1850 cm-1, the carbon film has a distinct UV Raman band in the range from 1578 cm-1 to 1620 cm-1 with a full width at half maximum from 25 to 165 cm-1. The carbon film can be deposited by chemical vapor deposition, physical vapor deposition, electrolysis, printing or painting, and can be continuous or noncontinuous.
Abstract:
The present invention is directed toward methods for incorporating low work function metals and salts of such metals into carbon nanotubes for use as field emitting materials. The present invention is also directed toward field emission devices, and associated components, comprising treated carbon nanotubes that have, incorporated into them, low work function metals and/or metal salts, and methods for making same. The treatments of the carbon nanotubes with the low work function metals and/or metal salts serve to improve their field emission properties relative to untreated carbon nanotubes when employed as a cathode material in field emission devices.
Abstract:
An N-channel FDM signal is converted into complex signals of baseband frequencies (1-6) spaced at intervals equal to frequency DELTA f. The complex baseband signals are converted first into digital samples (7-9)having a frequency N DELTA f and then into N parallel digital signals (11). A plurality of first FIR subfilters (17-1 through 17-N) respectively perform filtering on each of the parallel digital signals at frequency DELTA f to produce a first series of filtered digital signals from each of the first FIR subfilters, and (m - 1) groups of second FIR subfilters respectively perform filtering on each of the parallel digital signals at frequency DELTA f to produce a second series of filtered digital samples from each of the second FIR subfilters at timing displaced with respect to the first series by a/m DELTA f, where is an integer ranging from unity to (m - 1) and m is an integer equal to or greater than 2. Outputs of the first FIR subfilters are combined with outputs of the second FIR subfilters to produce N summation outputs at frequency m DELTA f. An N-point Fast Fourier Transform processor (14) performs fast Fourier transform on the N summation outputs at frequency m DELTA f to derive digital channels. Because of the oversampling at frequency m DELTA f, each of the digital channels has a frequency response which can be made flat over the bandwidth DELTA f.