Abstract:
The present disclosure relates to a common centroid ambient light sensor (1) comprising: a matrix of photodiodes having exactly a first row (R1) and a second row (R2); at least three color channels (ChB, ChR, ChG) comprising a first color channel (ChR) and a second color channel (ChG); a readout circuit (RR) of the first color channel (ChR) connected to exactly one photodiode (PDR1) in the first row (R1) and exactly one photodiode (PDR2) in the second row (R2); and a readout circuit (RG) of the second color channel (ChG) connected to exactly one photodiode (PDG1) in the first row (R1) and exactly one photodiode (PDG2) in the second row (R2).
Abstract:
A spectrometer configurable for field analyses of chemical properties of a material is provided. The spectrometer includes: at least one sensor adapted for providing Fourier transform infrared spectroscopy (FTIR) surveillance and at least another sensor for providing Raman spectroscopy surveillance. The spectrometer can be provided with a user accessible instruction set for modifying a sampling configuration of the spectrometer. A method of determining the most likely composition of a sample by at least two technologies using the spectrometer is also provided.
Abstract:
A method of measuring indications of hair type of a user, the method comprising the steps of: providing a mobile device; providing a reference card, the reference card including one or more reference markers; providing one or more of the user's hairs at the surface of the reference card; acquiring one or more images of said one or more hairs using the mobile device; identifying the path of each of the one or more hairs along the reference card; and calculating the diameter of each hair from the acquired image.
Abstract:
A system comprising: a mobile device, comprising: a camera configured to capture multiple images of a subject; a processor configured to identify a first image of the captured images as a blue frame, wherein the image was captured while the subject was illuminated by blue light, and identify a second image of one of the captured images as a white frame, wherein the image was captured while the subject was illuminated by white light; associate the blue frame with the white frame; detect a feature depicted in the blue frame that is not depicted in the associated white frame, indicate the detection of the feature to a user; and a user interface display configured to separately render the blue frame and the white frame.
Abstract:
A spectroscope 1A comprises a package 2 provided with a light entrance part 6, a plurality of lead pins 8 penetrating through a support part 4 opposing the light entrance part 6 in the package 2, and a spectroscopic module 3A supported on the support part 4 within the package 2. The spectroscopic module 3A has a light detection unit 20 provided with a light transmission part 22 for transmitting therethrough light L1 incident thereon from the light entrance part 6 and a spectroscopic unit 30, secured to the light detection unit 20 so as to be arranged on the support part 4 side of the light detection unit 20, including a spectroscopic part 35 for spectrally resolving the light L1 transmitted through the light transmission part 22 while reflecting the light to a light detection part 26. The lead pins 8 are fitted into fitting parts 29 provided with the light detection unit 20 and electrically connected to the light detection part 26.
Abstract:
In a standard process for determining an unknown sample, fluorescent substances are determined from respective fluorescence characteristics and model coefficients are calculated from spectrum ranges of the fluorescence characteristics of the determined fluorescent substances. An unknown sample is measured after reading of the model coefficients, whereby a target value of the unknown sample is obtained.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.