Abstract:
A method for coating the surfaces of three-dimensional objects with a coating agent is provided, which method is characterized by a blasting of the three-dimensional object, wherein a grainy blasting material that has been mixed with the coating agent is used as blasting medium.
Abstract:
A process for producing a film of a hydrophilic polymer on the inner surfaces of a fluidic component is provided comprising subjecting the inner surfaces of the fluidic component to a physicochemical pre-treatment, contacting the inner surfaces of the fluidic component with a solution of the hydrophilic polymer, replacing the solution of the hydrophilic polymer with a gaseous medium in such a manner that firstly the inner surfaces of the fluidic component remain wetted with part of the polymer solution, and removing the solvent to produce a film of the hydrophilic polymer on the inner surfaces of the fluidic component. The hydrophilic polymer used has a surface wettability for aqueous solutions which is higher than the surface wettability of the inner surfaces of the fluidic component itself.
Abstract:
Tubular ceramic structures, e.g., anode components of tubular fuel cells, are manufactured by applying ceramic-forming composition to the external surface of the heat shrinkable polymeric tubular mandrel component of a rotating mandrel-spindle assembly, removing the spindle from said assembly after a predetermined thickness of tubular ceramic structure has been built up on the mandrel and thereafter heat shrinking the mandrel to cause the mandrel to separate from the tubular ceramic structure.
Abstract:
A microstructured article includes a nanovoided layer having opposing first and second major surfaces, the first major surface being microstructured to form prisms, lenses, or other features. The nanovoided layer includes a polymeric binder and a plurality of interconnected voids, and optionally a plurality of nanoparticles. A second layer, which may include a viscoelastic layer or a polymeric resin layer, is disposed on the first or second major surface. A related method includes disposing a coating solution onto a substrate. The coating solution includes a polymerizable material, a solvent, and optional nanoparticles. The method includes polymerizing the polymerizable material while the coating solution is in contact with a microreplication tool to form a microstructured layer. The method also includes removing solvent from the microstructured layer to form a nanovoided microstructured article.
Abstract:
A method for making a conductive film of carbon nanotubes includes the steps of: a) preparing a carbon nanotube solution having a viscosity ranging from 1 to 50 c.p. at room temperature and containing a plurality of multi-walled carbon nanotubes; b) atomizing the carbon nanotube solution to form a plurality of atomized particles including the carbon nanotubes; c) providing a carrier gas to carry the atomized particles to a substrate disposed on a spin coating equipment; and d) spin coating the atomized particles on the substrate to form a conductive film of carbon nanotubes on a surface of the substrate.
Abstract:
An encapsulated bulkhead for use as a void filler to secure and protect cargo loads during transportation, such as in rail cars or trucks, is described. The encapsulated bulkhead includes a bulkhead member and an encapsulation or coating. In one embodiment, the bulkhead member includes two planar parallel deck sheets, a planar peripheral side member, and a honeycomb cell core, which may be made of corrugated paper or other paper. In another embodiment, the bulkhead member is a uniform expanded polystyrene foam. The coating is a water-resistant material which may be an elastomer, such as a polyurea, polyurethane, or polyurethane/polyurea hybrid. A method for encapsulating a bulkhead member is also provided. The method includes the steps of providing a bulkhead member, spraying the bulkhead member with the components of an elastomer to coat or encapsulate the bulkhead, and allowing the components to cure for a period of time sufficient to form the water-resistant elastomer.
Abstract:
Coated articles may comprise one or more coating layers, including water resistant coatings. A method comprises applying such coating layers by dip, spray or flow coating. The methods can make coated containers, preferably comprising polyethylene terephthalate, from coated preforms. In some methods, the aqueous solutions, dispersions, or emulsions are substantially or completely free of VOCs.
Abstract:
A multilayer dielectric structure is formed by vacuum depositing two-dimensional matrices of nanoparticles embedded in polymer dielectric layers that are thicker than the effective diameter of the nanoparticles, so as to produce a void-free, structured, three-dimensional lattice of nanoparticles in a polymeric dielectric material. As a result of the continuous, repeated, and controlled deposition process, each two-dimensional matrix of nanoparticles consists of a layer of uniformly distributed particles embedded in polymer and separated from adjacent matrix layers by continuous polymer dielectric layers, thus forming a precise three-dimensional nanoparticle matrix defined by the size and density of the nanoparticles in each matrix layer and by the thickness of the polymer layers between them. The resulting structured nanodielectric exhibits very high values of dielectric constant as well as high dielectric strength.
Abstract:
A liquid composition and a process for coating the composition onto a surface of a substrate in a substantially oxygen-free atmosphere, under vacuum conditions. The composition comprises one or more components, all of which components do not go into a gas or vapor phase under the vacuum conditions. The composition has an ethylenically unsaturated component composed of an ethylenically unsaturated methacrylate monomer, or a combination of an ethylenically unsaturated methacrylate monomer and an ethylenically unsaturated methacrylate oligomer. The ethylenically unsaturated component is polymerizable or crosslinkable by the application of sufficient electron beam radiation. The composition is substantially absent of ethylenically unsaturated acrylate components, substantially absent of polymerization initiators, and substantially absent of solvents. The composition optionally further comprises one or more polymers without an acrylate functional group and without a methacrylate functional group. The composition optionally further comprises one or more of waxes, pigments, and/or wetting agents.