Abstract:
A method is provided for winding an elastic yarn into a cylindrical substantially straight-ended yarn package. The method includes feeding an elastic or elastomeric yarn at a substantially constant speed to a tube core to form the yarn package. The yarn package is rotated such that the yarn package with a substantially constant surface speed. The yarn is wound to form layers of helical coils, while providing a helix angle variation of greater than zero up to +/- 80%.
Abstract:
The present invention relates to a process for hydrocyanating 3-pentene¬ nitrile. The process can include feeding 3-pentenenitrile and HCN to a hydrocyanation reaction zone that includes a Lewis acid promoter, nickel, and a phosphorus-containing ligand. In various embodiments, the process can also include controlling water concentration within the hydrocyanation reaction zone sufficient to maintain a high activity of the ligand catalyst complex while recycling at least a portion of the ligand catalyst complex.
Abstract:
A method for minimizing color growth in a polyether polyol product during storage and loading comprising the steps of providing a polyether polyol product to be stored and loaded for transport, wherein oxidation of the polyether polyol product would cause unwanted color growth and providing a system of storage and loading tanks and maintaining the storage and loading tanks below a set temperature to prevent oxidation of the polyether polyol product. Prior to filling the tanks with the polyether polyol product, substantially all of the air in the storage and loading tanks is replaced with an inert gas. After filling the tanks with the polyether polyol product, an anti-air intrusion system is provided to prevent additional air from entering the storage and loading tanks.
Abstract:
An improved method for recovering a purified polyether polyol comprising the steps of providing an aqueous solution of a polyether polyol containing an alkali metal catalyst residual formed from a transesterification process, contacting the aqueous solution with a stoichiometric excess of magnesium sulfate to form a second aqueous solution, removing water from said second aqueous solution at a temperature above the melt temperature of said polyether polyol to produce a dehydrated slurry containing a molten polyether polyol phase essentially free of residual alkali metal and a precipitated solid phase comprising sulfate and/or sulfite salts of the alkali metal catalyst, magnesium hydroxide, and excess magnesium sulfate and/or sulfide, passing the dehydrated slurry of through a filtration system comprising a filtration press to separate the molten polyether polyol phase from the precipitated solid phase, wherein the filtration press is treated with a filter aid that is essentially free of transition metal oxide content, separating the molten polyether polyol phase substantially free of water, residual alkali metal catalyst and transition metal contaminants from the precipitated solid phase and recovering polyether polyol from the separated polyether polyol phase.
Abstract:
Disclosed are methods for producing butadiene from one or more of several diverse feedstocks including bioderived feedstocks, renewable feedstocks, petrochemical feedstocks and natural gas.
Abstract:
The invention relates to methods for enriching monomer content in a cycloalkane oxidation process mixed organic waste stream. In particular, the methods involve combining a biocatalyst with a mixed organic waste stream from a cycloalkane oxidation process, and enzymatically converting dimeric and/or oligomeric components of said waste stream into monomeric components. The methods may enrich the content of diacids, adipic acid, and/or other α,ω-difunctional C6 alkanes in the mixed organic waste stream. Additionally, the treated mixed organic waste streams may have improved burning efficiency.