Abstract:
A method for printing on a low surface energy substrate. The low surface energy substrates may be flexible low surface energy substrates. A primer is applied to the surface of the low surface energy substrate using a spray coating system. A pressure pot spray system that oscillates as the substrate passes underneath it on a conveyor system may be used. The primer is then allowed to air dry. Once dry, a printer can be used to print a graphic, design or other ornamental feature on the primed surface of the substrate. Once printing is complete, a clear coating is applied to the substrate and then cured.
Abstract:
Disclosed are methods and systems for dispersing nanoparticles into a matrix. Disclosed is a system and method for coating a carrier film with a resin, spraying the resin with a suspended nanoparticle solution, and then transferring the resin-nanoparticle matrix to a collection vessel for dispensing for end use. Also, suspended nanoparticle solution is sprayed onto carrier film, the film is dried, a fabric layer is coated with resin layer, and nanoparticles are then transferred into the fabric resin layer to create a nanoparticle-infused fabric matrix. Fabric layers can also be coated with resin and sprayed with nanoparticles. Also disclosed is a system and method for coating a first carrier film with nanoparticles, coating a second carrier film with resin, and transferring nanoparticles from first carrier into the resin layer on the second carrier to create a nanoparticle infused resin material that can be collected and dispensed for end use.
Abstract:
A method for coating the surfaces of three-dimensional objects with a coating agent is provided, which method is characterized by a blasting of the three-dimensional object, wherein a grainy blasting material that has been mixed with the coating agent is used as blasting medium.
Abstract:
A method of forming a golf ball comprising at least one layer consisting of at least one of a thermoset or thermoplastic composition comprising the steps of: providing a subassembly having at least one of an innermost surface or an outermost surface; providing at least one polymeric mixture Pc comprising a plurality of particles having a softening, melting and/or reacting temperature Mp; heating a fluid with a heat source that does not contact Pc to a temperature Mph wherein Mp≦Mph to form a heated fluid; softening, melting and/or reacting the plurality of particles by mixing each polymeric mixture Pc with at least one heated fluid and forming at least one heated mixture Pcs; and propelling each Pcs onto at least one of the innermost surface or the outermost surface to form a thermoset and/or thermoplastic layer Tmpl about the outermost surface which may be comprised of a heterogeneous composition. The thickness of Tmpl may be from about 3 mils to about 0.10 in.
Abstract:
Disclosed herein is a waterproof sound-transmitting sheet having high sound transfer efficiency and excellent water proofing performance and a method for producing same. The waterproof sound-transmitting sheet includes: a sound-transmitting layer made of a polymer material and formed in the shape of a web having a plurality of pores; and a coating layer formed on at least one side of the sound-transmitting layer to block pores existing on the surface of the sound-transmitting layer.
Abstract:
Particles for forming interconnected or continuous layers of material are, in some embodiments, composed of a Material A, a first central material comprising at least one meltable, softenable, or sinterable substance, and Material B, a second substantially thin material applied to the outer surface of said first material which is thermally or mechanically breachable.
Abstract:
Methods include applying an electric charge to a coating material that includes carbon nanotubes and a carrier, such as paint, and depositing the electrically charged coating material to a substrate. In some methods, the applying includes utilizing an electrostatic sprayer. In some methods, the substrate is isolated from ground during the depositing. In some methods, the substrate is an insulator. Some methods result in regions of carbon nanotubes that are substantially longitudinally aligned after the depositing. Coated substrates may include a coating with carbon nanotubes that are substantially longitudinally aligned and in some examples that are arranged in a zig-zag pattern. Aircraft, spacecraft, land vehicles, marine vehicles, wind turbines, and apparatuses that may be susceptible to lightning strikes or other types of electromagnetic effects and that include a coated substrate also are disclosed.
Abstract:
Methods and systems for coating articles are described herein. The methods and systems described herein include, but are not limited to, steps for actively or passively controlling the temperature during the coating process, steps for providing intimate contact between the substrate and the support holding the substrate in order to maximize energy transfer, and/or steps for preparing gradient coatings. Methods for depositing high molecular weight polymeric coatings, end-capped polymer coatings, coatings covalently bonded to the substrate or one another, metallic coatings, and/or multilayer coatings are also disclosed. Deposition of coatings can be accelerated and/or improved by applying an electrical potential and/or through the use of inert gases.
Abstract:
A paper sizing or coating composition is provided, which includes: a first binder resin, which is compatible with dry toner binder resin; a second binder resin, which is compatible with liquid toner binder resin, and which is different from the first binder resin; a first pigment, which has a BET surface area of from greater than zero to about 35 m2/g; and a second pigment, which has a BET surface area of about 35 m2/g or greater, and which is different from the first pigment. Recording sheets which include the composition, methods of making the composition and recording sheets, and methods for making an image are provided.
Abstract:
Articles having crosslinked poly(vinyl alcohol) (PVA) and silica nanoparticle multilayer coatings are provided. More specifically, articles including a substrate, and a multilayer coating attached to the substrate are provided. The multilayer coating includes a first crosslinked poly(vinyl alcohol) (PVA) layer and a first silica layer. The first crosslinked PVA layer is an outermost layer of the multilayer coating. The first silica layer comprises a plurality of acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The PVA and silica nanoparticle multilayer coatings can be used on a large variety of substrates and tend to be resistant to wet and dry abrasions, scratches, and impacts.