Abstract:
A circuit structure has a first dielectric layer, a first circuit pattern embedded in the first dielectric layer and having a first via pad, a first conductive via passing through the first dielectric layer and connecting to the first via pad, and an independent via pad disposed on a surface of the first dielectric layer away from the first via pad and connecting to one end of the first conductive via. The circuit structure further has a second dielectric layer disposed over the surface of the first dielectric layer where the independent via pad is disposed, a second conductive via passing through the second dielectric layer and connecting to the independent via pad, and a second circuit pattern embedded in the second dielectric layer, located at a surface thereof away from the independent via pad, and having a second via pad connected to the second conductive via.
Abstract:
A method for fabricating a double-sided or multi-layer printed circuit board (PCB) by ink-jet printing that includes providing a substrate, forming a first self-assembly membrane (SAM) on at least one side of the substrate, forming a non-adhesive membrane on the first SAM, forming at least one microhole in the substrate, forming a second SAM on a surface of the microhole, providing catalyst particles on the at least one side of the substrate and on the surface of the microhole, and forming a catalyst circuit pattern on the substrate.
Abstract:
An apparatus for metal plating on a substrate with through-holes includes a chamber that the substrate is disposed inside the chamber to be divided into two sections. A pressure generator and a pressure controller are connected to this and correspond to two sides of the substrate respectively. The pressure generator is used for pumping a electrolyte flowed parallel to the surface of the substrate into the chamber. The pressure controller is used for channeling the electrolyte off the chamber and controlling the pressure differences between the two sides of the substrate. So that the electrolyte flowed parallel to the surface of the substrate is pumped by the pressure generator and it passes several through-holes to control the thickness of metal plating on the.substrate and inner walls of the through-holes.
Abstract:
A method for manufacturing an embedded wiring board is provided. An activating insulation layer is formed. The activating insulation layer includes a plurality of catalyst particles, and covers a first wiring layer. An intaglio pattern and at least one blind via partially exposing the first wiring layer are formed on the activating insulation layer, in which some of the catalyst particles are activated and exposed in the intaglio pattern and the blind via. The activating insulation layer is dipped in a first chemical plating solution, and a solid conductive pillar is formed in the blind via through electroless plating. The activating insulation layer is dipped in a second chemical plating solution after the solid conductive pillar is formed, and a second wiring layer is formed in the intaglio pattern through the electroless plating. Components of the first chemical plating solution and the second chemical plating solution are different.
Abstract:
A circuit structure includes an inner circuit layer, a first and a second dielectric layers, a first and a second conductive material layers, and a second and a third conductive layers. The first dielectric layer covers a first conductive layer of the inner circuit layer and has a first surface and first circuit grooves. The first conductive material layer is disposed inside the first circuit grooves. The second conductive layer is disposed on the first surface and includes a signal trace and at least two reference traces. The second dielectric layer covers the first surface and the second conductive layer and has a second surface and second circuit grooves. Widths of the first and the second circuit grooves are smaller than that of the reference traces. The second conductive material layer is disposed inside the second circuit grooves. The third conductive layer is disposed on the second surface.
Abstract:
A circuit board and a manufacturing method thereof are provided. According to the method, a dielectric layer is formed on a dielectric substrate, and the dielectric layer contains active particles. A surface treatment is performed on a surface of the dielectric first conductive layer is formed on the activated surface of the dielectric layer. A conductive via is formed in the dielectric substrate and the dielectric layer. A patterned mask layer is formed on the first conductive layer, in which the patterned mask layer exposes the conductive via and a part of the first conductive layer. A second conductive layer is formed on the first conductive layer and conductive via exposed by the patterned mask layer. The patterned mask layer and the first conductive layer below the patterned mask layer are removed.
Abstract:
A method for manufacturing an embedded wiring board is provided. An activating insulation layer is formed. The activating insulation layer includes a plurality of catalyst particles, and covers a first wiring layer. An intaglio pattern and at least one blind via partially exposing the first wiring layer are formed on the activating insulation layer, in which some of the catalyst particles are activated and exposed in the intaglio pattern and the blind via. The activating insulation layer is dipped in a first chemical plating solution, and a solid conductive pillar is formed in the blind via through electroless plating. The activating insulation layer is dipped in a second chemical plating solution after the solid conductive pillar is formed, and a second wiring layer is formed in the intaglio pattern through the electroless plating. Components of the first chemical plating solution and the second chemical plating solution are different.
Abstract:
A circuit structure of a circuit board includes a dielectric layer, a number of first circuits, and a number of second circuits. The dielectric layer has a surface and an intaglio pattern. The first circuits are disposed on the surface of the dielectric layer. The second circuits are disposed in the intaglio pattern of the dielectric layer. Line widths of the second circuits are smaller than line widths of the first circuits, and a distance between every two of the adjacent second circuits is shorter than a distance between every two of the adjacent first circuits.
Abstract:
A manufacturing method of circuit structure is described as follows. Firstly, a composite dielectric layer, a circuit board and an insulating layer disposed therebetween are provided. The composite dielectric layer includes a non-platable dielectric layer and a platable dielectric layer between the non-platable dielectric layer and the insulating layer wherein the non-platable dielectric layer includes a chemical non-platable material and the platable dielectric layer includes a chemical platable material. Then, the composite dielectric layer, the circuit board and the insulating layer are compressed. Subsequently, a through hole passing through the composite dielectric layer and the insulating layer is formed and a conductive via connecting a circuit layer of the circuit board is formed therein. Then, a trench pattern passing through the non-platable dielectric layer is formed on the composite dielectric layer. Subsequently, a chemical plating process is performed to form a conductive pattern in the trench pattern.
Abstract:
A method of fabrication a circuit board structure comprising providing a circuit board main body, forming a molded, irregular plastic body having a non-plate type, stereo structure and at least one scraggy surface by encapsulating at least a portion of said circuit board main body with injection molded material, and forming a first three-dimensional circuit pattern on said molded, irregular plastic body thereby defining a three-dimensional circuit device.