Abstract:
PURPOSE: A manufacturing method of a hydrophobic polymer-carbon support composite for a fuel cell electrode is provided to simplify manufacturing process, thereby mass producing water repellents for fuel battery air electrodes. CONSTITUTION: A manufacturing method of a hydrophobic polymer-carbon support composite for a fuel cell electrode comprises the following steps: manufacturing a dispersed solution by dispersing carbon support in a solvent; manufacturing a mixed solution which hydrophobic polymer is dispersed on surface of carbon support through mixing and ultrasonic dispersion after adding hydrophobic polymer in the dispersed solution; and heat-treating the mixed solution at 100-500 deg. Celsius. The carbon support has diameter of 10-1000 nano meters. 1-100.0 parts by weight of the hydrophobic polymer are used based on 100.0 parts by weight of carbon support.
Abstract:
PURPOSE: A porous electrode catalyst layer for a fuel cell is provided to obtain an electrode with improved bindability with a hydrocarbon-based film by lowering a glass transition temperature of a hydrocarbon-based binder. CONSTITUTION: A porous electrode catalyst layer for a fuel cell comprises sulfonated hydrocarbon, porogen, and platinum catalyst. The sulfonated hydrocarbon is such that single or two or more hydrocarbons are sulfonated, wherein the hydrocarbon is selected from polysulfone, polyarylene ethersulfone, polyetherethersulfone, polyethersulfone, polyimide, polyimidazole, polybenzimidazole, polyether benzimidazole, polyarylene ethylene ketone, polyether ether ketone, and polystyrene.
Abstract:
본 발명은 내부식성이 우수한 연료전지용 촉매 제조 방법에 관한 것으로서, 더욱 상세하게는 탄소 나노케이지(Carbon Nanocage(CNC))를 이용하여 내부식성이 우수한 연료전지의 공기극 촉매를 제조할 수 있도록 한 내부식성이 우수한 연료전지용 촉매 제조 방법에 관한 것이다. 이를 위해, 본 발명은 상기한 목적을 달성하기 위한 본 발명은 카본블랙(Carbon Black)류 탄소인 아세틸렌 블랙(Acetylene Black)을 사용하여 카본 나노케이지(Carbon Nanocage(CNC)) 제조하는 제1단계와; 용매이자 환원제 역할을 하는 에틸렌 글리콜(ethylene glycol)에 NaOH, 백금전구체, 카본(Carbon)을 일정량 넣어 교반하는 제2단계와; 상기 에틸렌 글리콜(ethylene glycol)을 산화시키면서 백금전구체를 환원시키는 제3단계와; pH 조절을 통해 백금의 담지율을 높이는 제4단계와; 세척 과정 및 열 건조를 거쳐 불필요한 유기물을 제거하는 제5단계; 를 포함하는 것을 특징으로 하는 내부식성이 우수한 연료전지용 촉매 제조 방법을 제공한다. 연료전지, 공기극, 부식, 내부식성, 평가 방법, 임피던스, 이산화탄소, CV 테스트, MEA, 촉매, 탄소 나노케이지, 카본블랙
Abstract:
3-아미노프로필트리에틸실란과 테트라에틸오소실리케이트의 기공 구조를 양말단에 포함하고 인산이 화학적으로 결합된, 주쇄가 폴리디메틸실록산(poly dimethyl siloxane)인 무기고분자로 이루어진 고분자 및 측쇄에 양이온 교환기를 갖는 양성자 전도성 고분자로 이루어진 고분자 블렌드 전해질 막 및 그 제조방법에 관한 것이다. 일반적으로, 양이온 전도성 전해질 막은 고온에서는 그 양이온 전도성이 급격히 떨어진다. 그러나, 효율성과 비용적인 이점이 있어, 고온에서도 양이온 전도성이 우수한 전해질 막이 요구되는 바, 본 발명에서는 고온용 고분자 블렌드 전해질 막과 이의 제조 방법을 제공하고자 한다. 연료전지, 전해질 막, 고분자 블렌드, 무기고분자, 인산
Abstract:
PURPOSE: A polymer electrolyte membrane is provided to improve membrane/electrode interface adhesion which improves H-ion conductivity and to secure long time stability of a hydrocarbon polymer membrane electrode assembly. CONSTITUTION: A polymer electrolyte membrane has 0.01-50 weight% of a polymer blend introduced to a proton-conducting hydrocarbon-based polymer which is a sulfonated polysulfone ketone copolymer. The sulfonated polysulfone ketone copolymer comprises an aromatic sulfone repeating unit, an aromatic ketone repeating unit, and an aromatic compound repeating unit which connects the repeating units by ether bond. At least one kind of the aromatic sulfone repeating unit and aromatic ketone repeating unit has a sulfonic acid or sulfonate substitution.
Abstract:
본 발명은 무가습 고분자 전해질 막에 산 용해 방지를 위하여 음이온 고정화 물질을 코팅층으로 도입하여 다층막으로 제조하는 연료전지용 무가습 고분자 전해질 막 및 이를 포함한 연료전지에 관한 것이다. 이를 더욱 상세하게 설명하면, 본 발명은 기존의 무가습 고분자 전해질 막에 음이온 고정화 물질을 코팅함으로써 다층막으로 형성된 고분자 전해질 막을 제공하고, 이를 이용하여 연료전지를 제조함으로써, 산의 용해를 방지하여 연료전지의 효과를 장기적, 지속적으로 유지시킬 수 있게 하고 이로 인해 경제적, 환경적 이득을 도모하고자 한다. 연료전지(Fuel Cell), 음이온 고정화 물질, 무가습 고분자 전해질 막(non-aqueous polymer electrolyte membrane), 다층 고분자 전해질 막, 산 용출 억제
Abstract:
A method for preparing a mixed electrode catalyst material for a solid electrolyte fuel cell is provided to reduce the amount of platinum required for producing a high-quality electrode catalyst, thereby reducing the manufacturing cost of an electrode catalyst and fuel cell. A method for preparing a mixed electrode catalyst material for a solid electrolyte fuel cell comprises the steps of: (a) dispersing a RuOs alloy material dispersed in the state of highly dispersed crystalline nanoparticles into water, injecting nitrogen thereto to remove undesired gases, and preliminarily injecting hydrogen thereto as a reducing agent; introducing a platinum precursor solution to the dispersion of RuOs alloy material and further injecting hydrogen thereto for 1 hour after the completion of the platinum precursor; and (c) washing and drying the resultant product after the completion of the hydrogen injection to obtain a powdery material.
Abstract:
A preparation method of a highly dispersed Pt supported catalyst is provided to improve Pt particle size and dispersibility. A method for preparing a highly dispersed Pt supported catalyst comprises the steps of: preparing a complex reducing agent by mixing ethylene glycol with sodium borohydride at a molar ratio of 1:0.01 to 1:0.1 and a temperature of 0 to 50 deg.C for 30 minutes to 3 hours; dispersing a Pt precursor and a carbon support into a solvent at a molar ratio of 1:9 to 8:2; mixing the complex reducing agent with the dispersed solvent at 0 to 50 deg.C for 30 minutes to 2 hours to prepare a mixed solution of the Pt precursor, the carbon support and the complex reducing agent; heat-treating the mixed solution of the Pt precursor, the carbon support, and the complex reducing agent at 40 to 80 deg.C for 3 to 10 hours; and filtering and cleaning the mixture after mixing the heat-treated mixed solution of the Pt precursor, the carbon support and the complex reducing agent with an aqueous hydrochloric acid solution at a volume ratio of 1:0.5 to 1:2 and a temperature of 0 to 50 deg.C for 20 minutes to 2 hours.
Abstract:
PURPOSE: A manufacturing method of an electrode for a fuel cell is provided to continuously maintain a catalyst layer and a porous structure for operation of a fuel cell, to be able to manufacture a pore structure with various sizes and distributions, and to facilitate control of the catalyst layer and the porous structure. CONSTITUTION: A manufacturing method of a Catalyst layer-combined electrode for a polymer electrolyte membrane fuel cell comprises: a step of providing plate-like porous metal foam(2,2a,2b) or a metal aerogel having a porous structure of nanometer or micron size; a step of manufacturing a catalyst layer-integrated electrode by fixing a catalyst to the metal foam or metal aerogel. The manufacturing method additionally comprises a step of impregnating an ion-conducting material into the catalyst layer-integrated electrode. [Reference numerals] (AA,EE) Gas; (BB,FF) Liquid; (CC) Large pores; (DD) Small pores; (GG,JJ) Electron; (HH, II) Ion