Abstract:
Treatment of a layer comprising self-assemblable polymer at a surface of a substrate is disclosed. In an embodiment, the treatment includes arranging a zone of temperature change to sweep across the layer, wherein a temperature of the layer within the zone differs from an initial temperature of the layer prior to passage of the zone.
Abstract:
A spectral purity filter, in particular for use in a lithographic apparatus using EUV radiation for the projection beam, includes a plurality of apertures in a substrate. The apertures are defined by walls having side surfaces that are inclined to the normal to a front surface of the substrate.
Abstract:
Embodiments of the invention relate to a mirror (30). The mirror includes a mirroring surface and a profiled coating layer (32a) having an outer surface, wherein one or more wedged elements are formed by the outer surface with respect to the mirroring surface, and wherein the one or more wedged elements having a wedge angle (ø) in a range of approximately 10 - 200 mrad. The profiled coating layer may have a curved outer surface. The profiled coating layer may be formed from at least one of the following materials: Be, B, C, P, K, Ca, Sc, Br, Rb, Sr, Y, Zr, Ru, Nb, Mo, Ba, La, Ce, Pr, Pa and U.
Abstract:
A method for removal of a deposition on an uncapped multilayer mirror of an apparatus. The method includes providing a gas comprising one or more Of H 2 , D 2 and DH, and one or more additional compounds selected from hydrocarbon compounds and/or silane compounds in at least part of the apparatus; producing hydrogen and/or deuterium radicals and radicals of the one or more additional compounds, from the gas; and bringing the uncapped multilayer mirror with deposition into contact with at least part of the hydrogen and/or deuterium radicals and the radicals of the one or more additional compounds to remove at least part of the deposition.
Abstract:
A delivery system for use within a lithographic system. The beam delivery system comprises optical elements arranged to receive a radiation beam from a radiation source and to reflect portions of radiation along one or more directions to form a one or more branch radiation beams for provision to one or more tools.
Abstract:
A method of patterning lithographic substrates that includes using a free electron laser to generate EUV radiation and delivering the EUV radiation to a lithographic apparatus which projects the EUV radiation onto lithographic substrates. The method further includes reducing fluctuations in the power of EUV radiation delivered to the lithographic substrates by using a feedback-based control loop to monitor the free electron laser and adjust operation of the free electron laser accordingly, and applying variable attenuation to EUV radiation that has been output by the free electron laser in order to further control the power of EUV radiation delivered to the lithographic apparatus.
Abstract:
A grazing incidence reflector (300) for EUV radiation includes a first mirror layer (310) and a multilayer mirror structure (320) beneath the first mirror layer. The first mirror layer reflects at least partially EUV radiation incident on the reflector with grazing incidence angles in a first range, and the first mirror layer transmits EUV radiation in a second range of incidence angles, which overlaps and extends beyond the first range of incidence angles. The multilayer mirror structure reflects EUV radiation that is incident on the reflector with grazing incidence angles in a second range that penetrates through the first mirror layer. A grazing incidence reflector can be used in a lithographic apparatus and in manufacturing a device by a lithographic process.
Abstract:
A multi-layer mirror includes on top of the multi-layer mirror a spectral purity enhancement layer, for example for application in an EUV lithographic apparatus. This spectral purity enhancement layer includes a first spectral purity enhancement layer, but between the multi-layer mirror and first spectral purity enhancement layer there may optionally be an intermediate layer or a second spectral purity enhancement layer and intermediate layer. Hence, multi-layer mirrors with the following configurations are possible: multi-layer mirror/first spectral purity enhancement layer; multi-layer mirror/intermediate layer/first spectral purity enhancement layer; and multi-layer mirror/second spectral purity enhancement layer/intermediate layer/first spectral purity enhancement layer. The spectral purity of normal incidence radiation may be enhanced, such that DUV radiation is diminished relatively stronger than EUV radiation.
Abstract:
A multi-layer mirror includes on top of the multi-layer mirror a spectral purity enhancement layer, for example for application in an EUV lithographic apparatus. This spectral purity enhancement layer includes a first spectral purity enhancement layer, but between the multi-layer mirror and first spectral purity enhancement layer there may optionally be an intermediate layer or a second spectral purity enhancement layer and intermediate layer. Hence, multi-layer mirrors with the following configurations are possible: multi-layer mirror/first spectral purity enhancement layer; multi-layer mirror/intermediate layer/first spectral purity enhancement layer; and multi-layer mirror/second spectral purity enhancement layer/intermediate layer/first spectral purity enhancement layer. The spectral purity of normal incidence radiation may be enhanced, such that DUV radiation is diminished relatively stronger than EUV radiation.