Abstract:
In one example in accordance with the present disclosure, a fluidic die assembly is described. The fluidic die assembly includes a rigid substrate having a bend therein. A fluidic die is disposed on the rigid substrate. The fluidic die is to eject fluid from a reservoir fluidly coupled to the fluidic die. The fluidic die includes an array of ejection subassemblies. Each ejection subassembly includes an ejection chamber to hold a volume of fluid, an opening, and a fluid actuator to eject a portion of the volume of fluid through the opening. The fluidic die assembly also includes an electrical interface disposed on the rigid substrate to establish an electrical connection between the fluidic die and a controller. The fluidic die and the electrical interface are disposed on a same surface on opposite sides of the bend.
Abstract:
An example of an imaging medium includes an image-receiving substrate, a donor ribbon attached to the image-receiving substrate, and a registration mark. The donor ribbon includes a donor ribbon substrate, a release layer disposed on the donor ribbon substrate, and a color layer disposed on the release layer. The color layer includes a repeated pattern. A repeat of the pattern includes at least adjacent color stripes including a cyan stripe, a magenta stripe, and a yellow stripe, or a grid of four color sections including i) a colored section selected from the group consisting of black, cyan, light cyan, yellow, magenta, and light magenta, ii) a cyan section, iii) a magenta section, and iv) a yellow section. The color layer is in contact with the image-receiving substrate.
Abstract:
A die may, in an example, include at least one cross-die recirculation channel formed into the die to recirculate an amount of printing fluid therethrough, the cross-die recirculation channel including a first-sized inlet port and a first-sized outlet port formed on a first side of the die, at least one chamber recirculation channel formed into the die and fluidically coupled to the cross-die recirculation channel to recirculate an amount of printing fluid therethrough, the chamber recirculation channel including a second-sized inlet port and a second-sized outlet port, at least one pump formed within the chamber recirculation channel to recirculate the amount of printing fluid therethrough.
Abstract:
A fluid ejection device includes a fluid ejection assembly including a fluid ejection die, and a service assembly to be slid relative to the fluid ejection assembly between a service position for service of the fluid ejection die and a retracted position nested with the fluid ejection assembly.
Abstract:
An electroporation system may include a well plate, a dispenser and a dispenser-well positioning system. The well plate may include wells, each of the wells including an interior, a first electrode adjacent the interior and a second electrode adjacent the interior and spaced from the first electrode. The first electrode and the second electrode are to apply an electrostatic field across the well. The dispenser is to dispense a cell having a diameter into each of the wells. The dispenser-well positioning system is to align each well and the dispenser such that the dispenser dispenses the cell into each well at a location spaced from the first electrode and the second electrode by a distance of at least 5 times the diameter of the cell.
Abstract:
A microfluidic package may include a fluid passage, a substrate having a substrate surface adjacent an interior of the fluid passage and components inset in the substrate, the components having component surfaces adjacent the fluid passage and substantially flush with the substrate surface.
Abstract:
A fluidic die may include a number of actuators. The number of actuators form a number of primitives. The fluidic die may include a digital-to-analog converter (DAC) to drive a number of the delay circuits. The delay circuits delay a number of activation pulses that activate the actuators associated with the primitives to reduce peak power demands of the fluidic die. A number of delay circuits may be coupled to each primitive.
Abstract:
One example includes a device that includes an insulator panel, a plurality of electrical inputs, and a plurality of electrodes. The plurality of electrical inputs may be disposed on the insulator panel and individually receive an actuation voltage. The plurality of electrodes may be disposed on the insulator panel and are coupled to the plurality of electrical inputs. Two or more of the plurality of electrodes may be coupled to a single one of the plurality of electrical inputs for each of the plurality of electrical inputs. The plurality of electrodes may be actuated with the actuation voltage individually received at a respective electrical input to create an electric field over associated electrodes to subject a droplet proximate to the associated electrodes actuated with the actuation voltage to an electrowetting force.
Abstract:
Aspects relating to an ink container for an image reproduction device are described herein. The ink container includes a body and an electrical connection. The body is formed by molding a polymer material having a metal seed layer. The electrical connection is formed by metallizing a plurality of traces in the metal seed layer. The electrical connection extends from an inside wall of the ink container to an outer wall. A width of the electrical connection on the inside wall of the ink container gradually varies from a bottom of the ink container to a rim.
Abstract:
A vertical interface (100) for a fluid supply cartridge (120) is to connect the fluid supply cartridge (120) to a fluid-ejection device (140). The vertical interface (100) includes one or more fluidic interconnect septums (102) to vertically fluidically interconnect a supply of fluid of the fluid supply cartridge to the fluid-ejection device. The vertical interface (100) includes an electrical interface (104) to vertically conductively connect a digital fluid level sensor (124) of the fluid supply cartridge (120) to a corresponding electrical interface (144) of the fluid-ejection device (140).