Abstract:
An intrinsically conductive polymer is prepared with a chemical oxidative process. The polymer is prepared by first dipping or coating a substrate with an Fe(III)-containing oxidizer solution and drying. The substrate is then dipped or coated with a monomer, such as 3,4-ethylenedioxythiophene solution, and reacted to form the conductive polymer. The monomer is dissolved in a solvent in which it has a high solubility but in which the Fe(III)-containing oxidizer has low solubility. This minimizes cross-contamination of the monomer and oxidizer dipping solutions thereby making this process suitable for high volume production. Dissolving the monomer in a solvent allows control over the stoichiometric ratio of monomer to oxidizer and prevents an excess of monomer thereby facilitating the removal of any unreacted monomer by water. The substrate is then dipped in an aqueous solution of para-toluenesulfonic acid to facilitate the removal of Fe(II) byproducts by enhancing their solubility in water and then the substrate may be washed with an aqueous solution or pure water. The process produces low ESR and low leakage valve metal capacitors with conductive polymer cathodes.
Abstract:
An electrolyte solution, containing glycerin and an acidic organic salt and/or inorganic salt and having an acidic pH, is new. An Independent claim is also included for anodizing a metal using the above electrolyte solution. Preferred Features: The electrolyte solution is produced by dissolving an acidic salt (especially p-toluene sulfonate) in glycerin or adding acidic and basic ionic components (especially potassium acetate and sulfuric or tartaric acid) to glycerin, followed by heating to above 150 deg C.
Abstract:
An electrolytic solution comprising glycerine and dibasic potassium phosphate. The electrolytic solution has a water content of less than 1000 ppm and is prepared by mixing the glycerine and the dibasic potassium phosphate and then heating to about 150 to 180°C for about 1 to 12 hours. A method of anodizing a metal comprising forming a film on the metal with an electrolytic solution comprising glycerine and dibasic potassium phosphate. The metal is preferably a valve metal, such as tantalum, and the film is formed at a temperature of 150°C or higher.
Abstract:
Conductive polymers are formed with a self-regenerating oxidant system made with a reversibly reducible metal salt at amounts sufficient to polymerize a cyclic monomer through oxidation and leave a reduced metal ion, and an oxidant in an amount sufficiently small and under conditions sufficient to oxidize the reduced metal ion but avoid oxidation or degradation of the polymer. The most preferred combination of agents includes ferric nitrate and a small amount of ammonium nitrate at a pH within the range of 2 to 7.
Abstract:
A process for forming a polymeric film comprises: (i) applying to an article a solution comprising an acid-doped polyaniline polymer dissolved in a solvent comprising N-ethyl pyrrolidone; and (ii) allowing the solvent to evaporate.
Abstract:
A capacitor, and method of making a capacitor, is provided wherein the capacitor has exceptionally high break down voltage. The capacitor has a tantalum anode with an anode wire attached there to. A dielectric film is on the tantalum anode. A conductive polymer is on the dielectric film. An anode lead is in electrical contact with the anode wire. A cathode lead is in electrical contact with the conductive polymer and the capacitor has a break down voltage of at least 60 V.