Abstract:
In a communication system capable of variable rate transmission, scheduling of high speed data transmission improves utilization of the forward link and decreases the transmission delay in data communication. Each remote station (6) is assigned one primary code channel for the duration of the communication with a cell. Secondary code channels of various types and transmission capabilities can be assigned by a channel scheduler (12) for scheduled transmission of data traffic at high rates. Secondary code channels are assigned in accordance with a set of system goals, a list of parameters, and collected information on the status of the communication network. Secondary code channels can be grouped into sets of secondary code channels. Data is partitioned in data frames and transmitted over the primary and secondary code channels which have been assigned to the scheduled user.
Abstract:
Techniques for utilizing multiple carriers to substantially improve transmission capacity are described. For multi-carrier operation, a terminal receives an assignment of multiple forward link (FL) carriers and at least one reverse link (RL) carrier. The carriers may be arranged in at least one group, with each group including at least one FL carrier and one RL carrier. The terminal may receive packets on the FL carrier(s) in each group and may send acknowledgements for the received packets via the RL carrier in that group. The terminal may send channel quality indication (CQI) reports for the FL carrier(s) in each group via the RL carrier in that group. The terminal may also transmit data on the RL carrier(s). The terminal may send designated RL signaling (e.g., to originate a call) on a primary RL carrier and may receive designated FL signaling (e.g., for call setup) on a primary FL carrier.
Abstract:
A Method and System for Utilization of an Outer Decoder in a Broadcast Services Communication System is described. An outer decoder and an inner decoder encode a block of information to be transmitted, to improve protection by adding redundancy. The redundancy permits decoding of the information from less than a complete encoded block of information. Consequently, the receiving station determines when sufficient amount of information for successful decoding has been received, and utilizes the time remaining before the next block of information arrives to perform other activities, e.g., hard handoff on a broadcast channel, inter-frequency hard handoff, and other activities. Alternatively, the receiving station can cease reception, thus decrease power consumption. Furthermore, part of the information block may be utilized for transmission of signaling information.
Abstract:
A method and apparatus for minimizing disruption during a frequency search excursion to a target frequency. The method may be preformed as part of inter-frequency hard-handoff between cells on different RF CDMA channels. The method minimizes search times by tuning a selected mobile station (102) to a target frequency and collecting chip samples which are then stored in a buffer (207). Pilot searches and pilot strength measurements are not performed while on the target frequency. The selected mobile station (102) is tuned back to the original frequency and simultaneously resumes reception of forward link and transmission of reverse link communications. The chip samples collected on the target frequency are processed to calculate pilot strength. In another embodiment, the method minimizes disruption of service on the current frequency during the frequency search by increasing the amount of power allocated to other symbols contained in a data frame impacted by the search excursion. This power increase is a function of search excursion time.
Abstract:
A set of individually gain adjusted subscriber channels (402, 404, 411, 415) are formed via the use of a set of orthogonal subchannel codes (Wc, Ws, Wf) having a small number of PN spreading chips per orthogonal waveform period. Data to be transmitted via one of the transmit channels is low code rate error correction encoded and sequence repeated before being modulated with one of the subchannel codes, gain adjusted, and summed with data modulated using the other subchannel codes. The resulting summed data (410, 420) is modulated using a user long code and a pseudorandom spreading code (PN code) and upconverted for transmission. The use of the short orthogonal codes provides interference suppression while still allowing extensive error correction coding and repetition for time diversity to overcome the Raleigh fading commonly experienced in terrestrial wireless systems. The set of sub-channel codes may comprise four Walsh codes, each orthogonal to the remaining codes of the set. The use of four sub-channels is preferred as it allows shorter orthogonal codes to be used, however, the use of a greater number of channels and therefore longer codes is acceptable. Preferably, pilot data is transmitted via a first one of the transmit channels and power control data transmitted via a second transmit channel. The length, or number of chips, in each channel code may be different to further reduce the peak-to-average transmit power for higher rate data transmission.
Abstract:
A method and an apparatus for recovery of particular bits in a frame are disclosed. An origination station forms a frame structure with groups of information bits of different importance. All the information bits are then protected by an outer quality metric. Additionally, the groups of more important information bits are further protected by an inner quality metric; each group having a corresponding quality metric. The frame is then transmitted to a destination station. The destination station decodes the received frame and decides, first in accordance with the outer quality metric, whether the frame has been correctly received, or whether the frame is erased. If the fame has been declared erased, the destination station attempts to recover the groups of more important information bits in accordance with the corresponding inner quality metrics.
Abstract:
A set of individually gain adjusted subscriber channels (A, B, C, Pilot) are formed via the use of a set of orthogonal subchannel codes (Walsh+-, Walsh++--) having a small number of PN spreading chips per orthogonal waveform period. Data to be transmitted via one of the transmit channels is low code rate error correction encoded and sequence repeated before being modulated with one of the subchannel codes, gain adjusted, and summed with data modulated using the other subchannel codes. The resulting summed data (316) is modulated using a user long code and a pseudorandom spreading code (PN code) and upconverted for transmission. The use of the short orthogonal codes provides interference suppression while still allowing extensive error correction coding and repetition for time diversity to overcome the Raleigh fading commonly experienced in terrestrial wireless systems. The set of sub-channel code may comprise four Walsh codes, each orthogonal to the remaining codes of the set. The use of four sub-channels is preferred as it allows shorter orthogonal codes to be used, however, the use of a greater number of channels and therefore longer codes is acceptable. Preferably, the pilot data and control data are combined onto one channel. The remaining two transmit channels are used for transmitting non-specified digital data including user data or signaling data, or both.
Abstract:
In an orthogonal frequency division multiplexing (OFDM) system (10) which uses an outer Reed-Solomon encoder and interleaver (24) and an inner convolutional encoder (26), after the inner convolutional encoding the data bits are interleaved by an inner interleaver (28), and then grouped into symbols, each symbol having "m" bits. After grouping, the symbols are mapped to a complex plane using quadrature amplitude modulation (QAM). Thus, bits, not symbols, are interleaved by the inner interleaver (28). A receiver (12) performs a soft decision regarding the value of each bit in each complex QAM symbol received.
Abstract:
A novel and improved method for implementing a high-transmission-rate over-the-air interface is described. A transmit system provides an in-phase channel set (90) and a quadrature-phase channel set (92). The in-phase channel set (90) is used to provide a complete set of orthogonal medium rate control and traffic channels. The quadrature-phase channel (92) set is used to provide a high-rate supplemental channel and an extended set of medium rate channels that are orthogonal to each other and the original medium rate channels. The high-rate supplemental channel is generated over a set of medium rate channels using a short channel code. The medium rate channel are generated using a set of long channel codes.
Abstract:
TECHNIQUES FOR UTILIZING MULTIPLE CARRIERS TO SUBSTANTIALLY IMPROVE TRANSMISSION CAPASITY ARE DESCRIBED. FOR MULTI-CARRIER OPERATION, A TERMINAL (120) RECEIVE AN ASSIGNMENT OF MULTIPLE FOWARD LINK (FL) CARRIERS AND AT LEAST ONE RESERVE LINK (RL) CARRIER. THE CARRIERS MAY BE ARRANGED IN AT LEAST ONE GROUP, WITH EACH GROUP INCLUDING AT LEAST ONE FL CARRIER AND ONE RL CARRIER. THE TERMINAL MAY RECEIVE PACKETS ON THE FL CARRIER(S) IN EACH GROUP AND MAY SEND ACKNOWLEGEMENTS FOR THE RECEIVED PACKETS VIA THE RL CARRIER IN THAT GROUP. THE TERMINAL (120) MAY SEND CHANNEL QUALITY INDICATION (CQI) REPORTS FOR THE FL CARRIER(S) IN EACH GROUP VIA THE RL CARRIER IN THAT GROUP. THE TERMINAL (120) MAY ALSO TRANSMIT DATA ON THE RL CARRIER(S). THE TERMINAL (120) MAY SEND DESIGNATED RL SIGNALING (E.G., TO ORIGINATE A CALL) ON A PRIMARY RL CARRIER AND MAY RECEIVE DESIGNATED FL SIGNALING (E.G., FOR CALL SETUP) ON A PRIMARY FL CARRIER.