Abstract:
Disclosed herein are a method of preparing Li-doped silica nanotubes using an anodic aluminum oxide (AAO) template, and a method of storing energy using the prepared Li-doped silica nanotubes. Unlike prior methods for preparing metal nanotubes, according to the disclosed preparation method, the Li-doped silica nanotubes having a uniform size can be easily obtained in mild conditions using a lithium precursor, a silica sol and an anodic aluminum oxide template. The preparation method comprises adsorbing the lithium precursor and the silica sol on the surface of the AAO template, drying the lithium precursor and the silica sol, adsorbed onto the AAO template, in a vacuum, to form nanotubes, and then drying the nanotubes. The Li-doped silica nanotubes prepared according to the disclosed method can be used as economical hydrogen storage materials, electrode materials for lithium secondary batteries, or energy storage sources for automobiles or other transportation means.
Abstract:
Disclosed is a carbon nanotube having a modified surface through transition metal coordination. The carbon nanotube includes a carbon nanotube having a surface where a π-electron exists, and a transition metal ion being coordinate-bonded by electron -sharing of the π-electron existing in the surface of the carbon nanotube. A carbon nanotube further includes an organic material coordinate-bonded to the transition metal ion. A method of manufacturing the carbon nanotube is also disclosed.
Abstract:
Disclosed is a method of analyzing mass of the phosphoproteins or phosphopeptides and of analyzing phosphorylated positions at a phosphoprotein or phosphopeptide, comprising the steps of: 1) dephosphorylating at least one Ser and/or Thr residue of the phosphoprotein or phosphopeptide; 2) tagging the dephosphorylated amino acid residues with a tag having a R-L-G moiety wherein R is a nucleophilic functional group that selectively bind with dephosphorylated amino acid residues, G is selected from the group consisting of guanidine moiety or protected guanidine moiety such as a mono-N-protected guanidino group, a di-N,N'-protected guanidino group and an N'-protected guanidino group, and L is a linker linking the R and the G; and 3) subjecting the tagged proteins or peptides to mass spectrometry. The method is capable of precisely analyzing mass of phosphoproteins of trace amounts as well as positions of phosphoryated amino acids.
Abstract:
The present invention provides a method for protein chip analysis by using surface plasmon resonance spectroscopic image technology. A protein chip with a plurality of spots, arranged at a specific interval in vertical and horizontal directions, is mounted on a x-y stage, and p-polarized beams that passed through a prism are sequentially irradiated on each spot of the protein chip. The light signal reflected from each spot of the protein chip is collected into a spectrometer and its surface plasmon resonance wavelength is determined. This surface plasmon resonance wavelength value is represented by a color at the position of each protein spot to obtain a two dimensional image. Otherwise, the surface plasmon resonance wavelength value is allocated to a z-coordinate value to obtain a three-dimensional image.
Abstract:
The present invention relates to an atomic layer polishing method comprising: the steps of: scanning the surface of a specimen to measure a peak site on the specimen surface; spraying toward the measured peak site a gas containing an element capable of binding to a first atom, which is an ingredient of the material of the specimen to form a first reaction gas layer in which the first reaction gas binds to the first atom on the surface of the peak; and projecting ions of inert gas to the peak site on which the first reaction gas layer is deposited to separate the first atom bound to the first reaction gas from the specimen.
Abstract:
The present invention relates to a pharmaceutical composition for the prevention or treatment of diabetes or fatty liver comprising a CYP4A (cytochrome P450A) inhibitor as an active ingredient. The compound of the present invention has activities of promoting glucose uptake into hepatocytes, inhibiting fat accumulation in liver cells, and inhibiting reactive oxygen production in mitochondria, and thus can be very usefully used for the development of a therapeutic agent for diabetes or fatty liver.
Abstract:
Provided are a hydrophilic particle, a method for manufacturing the same, and a contrasting agent using the same. More specifically, the hydrophilic particle according to the inventive concept may include a hydrophobic particle, and an amphiphilic organic dye directly absorbed on a surface of the hydrophobic particle. In this case, the hydrophobic particle includes a center particle, and a hydrophobic ligand covering a surface of the center particle, and the amphiphilic organic dye may be combined to the hydrophobic ligand by a hydrophobic interaction. The hydrophilic particle may have a surface zeta potential lower than a surface zeta potential of the amphiphilic organic dye.
Abstract:
The present invention is about a neutral particle beam source for producing a high density plasma in high vacuum and a thin film deposition system employing said neutral particle beam source, According to the present invention, the plasma is generated by using microwave through the microwave irradiating equipment and a magnetic field by more than one pair of belt type magnets and the high density plasma can be accomplished by maximizing the plasma confinement effect inducing an electron returning trajectory in accordance with the above continuous structure of the belt type magnet in combination with the microwave irradiating equipment.