Abstract:
A system and method assists the driver of a motor vehicle in preventing accidents or minimizing the effects of same. In one form, a television camera or other ranging device is mounted on a vehicle and scans the roadway ahead of the vehicle as the vehicle travels. Continuously generated video picture signals output by the camera are electronically processed and analyzed by a fuzzy-logic-based image analyzing computer mounted in the controlled vehicle, which generates control signals and applies them to control the operation of the accelerator, brake, and steering system of the vehicle in a coordinated way to attempt to avoid or lessen the effects of a collision. In a particular form, the decision computer may select the evasive action taken from a number of choices, depending on whether and where the detection device senses other vehicles and obstacles. Warning signals may also be generated.
Abstract:
A system and method assists the driver of a motor vehicle in preventing accidents or minimizing the effects of same. In one form, a television camera is mounted on a vehicle and scans the roadway ahead of the vehicle as the vehicle travels. Continuously generated video picture signals output by the camera are electronically processed and analyzed by an image analyzing computer, which generates codes that serve to identify obstacles. A decision computer mounted in the controlled vehicle receives such code signals along with code signals generated by the speedometer or one or more sensors sensing steering mechanism operation and generates control signals. Such code signals may be displayed, and a synthetic speech or special sound generating and warning means used, to warn the driver of the vehicle of approaching and existing hazards. The system may also use the control signals, particularly through application of fuzzy logic, to control the operation of the brakes and steering mechanism of the vehicle to avoid or lessen the effects of a collision. In a particular form, the decision computer may select the evasive action taken from a number of choices, depending on whether and where the detection device senses other vehicles or obstacles.
Abstract:
The invention concerns a system for automatic following guidance, particularly for heavy-traffic automatic following guidance, of a motor vehicle (1), designed to ease the burden on the driver in heavy-traffic situations both by taking over lateral guidance by means of an automatic steering regulation system and by maintaining a set distance from a leading vehicle. The latter function requires an adaptive cruise and braking regulation system with “stop” and “go” function. According to the invention, selection and decision means (5, 6, 7, 8, 9) are provided that select both the regulating parameters and the types of controllers [sic], e.g., following guidance of the motor vehicle (1) on the basis of lane markings recognized by means of a video camera or on the basis of a recognized leading vehicle. The system is divided into hierarchical levels I-IV, the driver always being in the monitoring and adaptation loop assigned to the top level IV of the hierarchy, so that he has the highest priority and can override the system at any time.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
An embodiment or the present invention includes a device to alter transfer characteristies of a road departure warning installation installed on a road to a driver of a vehicle, including a rumble strip sensor to sense input from a rumble strip and an adjustable vehicle component in communication with the sumble strip sensor, the adjustable vehicle component configured to automatically adjust to increase an amount of input from the romble strip sensed by the driver. Another embodiment of the present invention includes a device to estimate lateral displacement of a vehicle based on the location of a rumble strip installed on a road with respect to the vehicle, the device including a processor configured to receive four signals indicative of contact of a rumble strip with respective associated four tires of the vehicle and to estimate a lateral distance that the vehicle has traveled beyond the detected rumple strip.
Abstract:
The invention relates to a system for automatic following-distance control, notably in congested traffic, in a motor vehicle (1) so as to facilitate driving in congested traffic by both taking over transverse steering by means of an automatic steering system and ensuring that a given distance is maintained to a vehicle driving ahead. The latter function calls for an adaptive driving and brake control system with a 'stop' and 'go' function. According to the invention selection and decision means (5, 6, 7, 8, 9) are provided for which are able to selected both control parameters and control types, for example following-distance control of the motor vehicle (1) in accordance with road markings recognized by video camera or in accordance with a detected leading vehicle. The system is divided into hierarchical levels (I-IV). The driver always remains in the monitoring and adaptation circuit assigned to the highest hierarchical level (IV) so that he has the highest priority and can overrule the system at any time.
Abstract:
Die vorliegende Erfindung betrifft ein Verkehrsmittel mit einer 3D-Entfernungsbildkamera und ein Verfahren zum Aufbau und Betreiben der 3D-Entfernungsbildkamera in Verkehrsmitteln, insbesondere Kraftfahrzeugen. Insbesondere ist das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung geeignet zur Anwendung in Kraftfahrzeugen als Bremsassistent, Schadensreduzierungssystem, Closing Velocity-Sensorik, vorzugsweise als Aufprallerkennung im Frontbereich, der Seite und/oder am Heck, Unfallvermeidung, Fußgängerschutz, Stop-and-Go- bzw. Stauassistent, Einparkhilfe, beispielsweise Parklückenvermessung, Parkassistent und/oder autonomes Einparken. Weiterhin kann die Erfindung vorteilhaft eingesetzt werden zur Totwinkelüberwachung, als Spurverlassungswarnsystem, Spurwechselassistent, insbesondere mit Totwinkelüberwachung und/oder Spurlageerkennung, Spurhalteassistent, Überschlags- und/oder Nickwinkelerkennung. Ferner kann mit Vorteil ein Einsatz der Erfindung bei Night Vision, zur Straßenzustandserkennung, als Türstopper, zur Verkehrszeichenerkennung, als Lichtsensor, Wettersensor, Befahrbarkeitssensor und/oder zur Andockhilfe oder Rückfahrhilfe vorgesehen sein.
Abstract:
The invention relates to a system for automatic following-distance control, notably in congested traffic, in a motor vehicle (1) so as to facilitate driving in congested traffic by both taking over transverse steering by means of an automatic steering system and ensuring that a given distance is maintained to a vehicle driving ahead. The latter function calls for an adaptive driving and brake control system with a "stop" and "go" function. According to the invention selection and decision means (5, 6, 7, 8, 9) are provided for which are able to selected both control parameters and control types, for example following-distance control of the motor vehicle (1) in accordance with road markings recognized by video camera or in accordance with a detected leading vehicle. The system is divided into hierarchical levels (I-IV). The driver always remains in the monitoring and adaptation circuit assigned to the highest hierarchical level (IV) so that he has the highest priority and can overrule the system at any time.
Abstract:
The invention relates to a system for automatic following-distance control, notably in congested traffic, in a motor vehicle (1) so as to facilitate driving in congested traffic by both taking over transverse steering by means of an automatic steering system and ensuring that a given distance is maintained to a vehicle driving ahead. The latter function calls for an adaptive driving and brake control system with a "stop" and "go" function. According to the invention selection and decision means (5, 6, 7, 8, 9) are provided for which are able to selected both control parameters and control types, for example following-distance control of the motor vehicle (1) in accordance with road markings recognized by video camera or in accordance with a detected leading vehicle. The system is divided into hierarchical levels (I-IV). The driver always remains in the monitoring and adaptation circuit assigned to the highest hierarchical level (IV) so that he has the highest priority and can overrule the system at any time.