Abstract:
A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
Abstract:
In one example, a long endurance airship system includes a payload airship and a first logistics airship mechanically joined to the payload airship to form a first combined airship, the payload airship and the logistics airship having design capabilities differing by at least a factor of two with regard to at least one of: power generation capability, propulsion capability, endurance capability, and lift capability, in which the first combined airship is free flying, lighter-than-air, and configured to maintain stationkeeping for greater than 30 days. Illustrative methods for long endurance airship operations are also provided.
Abstract:
A system for positioning an unmanned aerial vehicle is provided including a position reference system including an electromagnetic radiation transmitter configured to modulate a transmission signal to encode location information associated with a coordinate system relative to the electromagnetic radiation transmitter. The system further includes an unmanned aerial vehicle including at least one control device configured to control a position of the unmanned aerial vehicle and an electromagnetic radiation receiver configured to receive the transmission signal. The unmanned aerial vehicle further includes a control system configured to control the at least one control device based at least in part on the location information received by the electromagnetic radiation receiver.
Abstract:
A system and method for the transfer of cryogenic fluid fuel includes a nozzle positionable with respect to fuel tank inlet, e.g., of an unmanned aerial vehicle (UAV), a seal to seal the area where the nozzle and inlet are connected, a collapsible and expandable bellows providing an isolation volume where the fluid is transferred from the nozzle into the inlet; a vacuum is provided in the volume to avoid accumulation of fuel or other species in the volume.
Abstract:
A system for positioning an unmanned aerial vehicle is provided including a position reference system including an electromagnetic radiation transmitter configured to modulate a transmission signal to encode location information associated with a coordinate system relative to the electromagnetic radiation transmitter. The system further includes an unmanned aerial vehicle including at least one control device configured to control a position of the unmanned aerial vehicle and an electromagnetic radiation receiver configured to receive the transmission signal. The unmanned aerial vehicle further includes a control system configured to control the at least one control device based at least in part on the location information received by the electromagnetic radiation receiver.
Abstract:
An unmanned aerial vehicle comprising at least one rotor motor. The rotor motor is powered by a micro hybrid generation system. The micro hybrid generator system comprises a rechargeable battery configured to provide power to the at least one rotor motor, a small engine configured to generate mechanical power, a generator motor coupled to the small engine and configured to generate AC power using the mechanical power generated by the small engine, a bridge rectifier configured to convert the AC power generated by the generator motor to DC power and provide the DC power to either or both the rechargeable battery and the at least one rotor motor, and an electronic control unit configured to control a throttle of the small engine based, at least in part, on a power demand of at least one load, the at least one load including the at least one rotor motor.
Abstract:
An unmanned aerial vehicle comprising at least one rotor motor. The rotor motor is powered by a micro hybrid generation system. The micro hybrid generator system comprises a rechargeable battery configured to provide power to the at least one rotor motor, a small engine configured to generate mechanical power, a generator motor coupled to the small engine and configured to generate AC power using the mechanical power generated by the small engine, a bridge rectifier configured to convert the AC power generated by the generator motor to DC power and provide the DC power to either or both the rechargeable battery and the at least one rotor motor, and an electronic control unit configured to control a throttle of the small engine based, at least in part, on a power demand of at least one load, the at least one load including the at least one rotor motor.
Abstract:
An apparatus and method for aerial recovery of an unmanned aerial vehicle (UAV) are provided. The apparatus includes a rigid base having a first section and a second section, wherein the first section is securely mounted to a floor of an aircraft. The apparatus further includes a servicing platform moveably mounted to the base and configured to move along a direction parallel to a longitudinal axis of the aircraft such that in an extended position, the servicing platform at least partially protrudes from a rear cargo door of the aircraft, wherein the servicing platform comprises a capturing mechanism configured to capture the UAV in the extended position.
Abstract:
An unmanned self-sustained fuel dispensing station for fuels of all sorts (gasoline, pesticides, water, fertilizers etc.) a tank, docking, and coupling system for unmanned aerial vehicles (UAV) of the vertical takeoff types. The station can be independent of public power and communication utilities and can operate by remote control without an on-site attendant. The preferred system has a central command center with a control computer in communication with a station control computer located at one or more satellite stations through a communications link. The station control computer can be controlled remotely by the command center. The station control computer programming has control over the activities of the station through an electrical generation subsystem with a solar array, battery bank, battery charger and standby generator; a fuel dispensing subsystem; a security subsystem with video cameras; a communications link and a status sensor subsystem.
Abstract:
A hose is disclosed for conveying fluids. The hose has a wall defining a fluid carrying tube and a power and/or data transmission cable is integrated into said wall. Also disclosed is a user definable module that is removably attachable to the distal end of a fluid conveying hose. The hose being releasably connectable to a fluid receiving entity to provide fluid to said entity. The fluid conveying hose has a wall defining a fluid carrying tube and a power and/or data transmission cable integrated into that wall. The user definable module is connectable to the cable and has components to measure at least one measurable parameter at the end of the hose and/or provide electrical connection between the cable and said fluid receiving entity for the transmission of data and/or power along the hose via said user definable interface. Also disclosed is a method of configuring a hose for fluid transfer. The method includes the step of selecting a user definable module and attaching the selected module to a distal end of the hose prior to connecting said hose to a fluid receiving entity.