Abstract:
A test flight system includes a test aircraft, and an atmospheric conditions-detecting vehicle that is separate and distinct from the test aircraft. The atmospheric conditions-detecting vehicle is configured to be deployed during a test flight of the test aircraft to detect atmospheric conditions of an environment in which the test aircraft operates during the test flight.
Abstract:
A weather modification system that includes both systems and vehicles capable of modifying the weather. The systems may include devices capable of utilizing compositions to create dispersants that can modify weather. The system is capable of autonomous weather modification where the vehicles may operate for long periods of time in the air and may be directed by a control station. The vehicles may include an airplane, a UAV, a balloon, a satellite, an airship, such as a lenticular airship, a helicopter or a lighter than air vehicle. The vehicles are capable of multiple functions including weather modification, weather monitoring, and coordination between different vehicles.
Abstract:
In one example, an unmanned aerial vehicle includes a fuselage and a lift assembly. The lift assembly is selected from a plurality of lift assemblies, each of the plurality of lift assemblies having a different flight modality. The fuselage includes a mounting portion configured to mount with any of the plurality of lift assemblies.
Abstract:
The disclosed embodiments include a trailer for an autonomous vehicle controlled by a command and control interface. The trailer includes a trailer body configured to retain the autonomous vehicle in an undeployed configuration. The trailer also anchors the autonomous vehicle in a deployed configuration. A tether is provided having a first end coupled to the trailer body and a second end that is configured to couple to the autonomous vehicle. A winch is utilized to adjust a length of the tether to move the autonomous vehicle between the undeployed configuration and deployed configuration. Further, a communication system communicates with the command and control interface and the autonomous vehicle to control movement of the autonomous vehicle between the undeployed configuration and deployed configuration.
Abstract:
Methods and apparatus to provide an aerial vehicle having an eyewall sensor to enable the aerial vehicle to stay within the eye of a hurricane and transmit weather information to a remote location. In one embodiment, the aerial vehicle is an unmanned aerial vehicle (UAV) launched into the eye of the hurricane.
Abstract:
An apparatus for removing harmful gas components out of the earth's atmosphere is a free-flying autonomous lightweight aircraft with an onboard gas processing system including gas separation or extraction devices, and inlets and outlets connected to the devices. Solar cells and/or thermoelectric generators provided on the craft produce electrical energy to operate the individual devices. The system may include a cryogenic closed-loop circulation system that participates in liquefying the extracted gas components. The apparatus is preferably a lighter-than-air craft like a dirigible. A method of extracting harmful gas components from the atmosphere involves flying the apparatus at a prescribed altitude level and operating the gas processing system to remove the harmful gas component from the atmosphere, then returning the apparatus to earth to offload the liquefied stored harmful gas component.
Abstract:
The disclosed embodiments include a trailer for an autonomous vehicle controlled by a command and control interface. The trailer includes a trailer body configured to retain the autonomous vehicle in an undeployed configuration. The trailer also anchors the autonomous vehicle in a deployed configuration. A tether is provided having a first end coupled to the trailer body and a second end that is configured to couple to the autonomous vehicle. A winch is utilized to adjust a length of the tether to move the autonomous vehicle between the undeployed configuration and deployed configuration. Further, a communication system communicates with the command and control interface and the autonomous vehicle to control movement of the autonomous vehicle between the undeployed configuration and deployed configuration.
Abstract:
Platform (100; 200, 200′, 200″) configured to acquire images and/or radio signals and to be carried by lightweight aviation aircrafts, characterised in that it comprises housing means (1, 3; 22, 201, 202, 203, 31) that houses one or more acquisition sensors selected from the group comprising or consisting of cameras (5; 51; 32) configured to acquire still and/or moving images and radio signal receivers (62; 34) configured to acquire radio signals, said housing means (1, 3; 22, 201, 202, 203, 31) being configured to be coupled to a light aviation aircraft (540), said one or more acquisition sensors (5; 51; 32; 62; 34) being connected to processing means (6; 23) configured to receive sensing data from a position and motion sensing unit (10; 230) coupled to said one or more acquisition sensors (5; 51; 32; 62; 34), said processing means (6; 23) being configured to control and/or program, on the basis of the received sensing data, each acquisition sensor (5; 51; 32; 62; 34) so as to enable the same to acquire images and/or radio signals when such acquisition sensor (5; 51; 32; 62; 34) is in a determined position and is subject to oscillations having a velocity that is not larger in absolute value than a maximum oscillation velocity value, whereby a rate of variation of an actual aiming of such acquisition sensor (5; 51; 32; 62; 34) is not larger in absolute value than a respective maximum value of rate of variation of offset with respect to an ideal aiming at a target, so as to ensure focusing of such acquisition sensor (5; 51; 32; 62; 34) on an aimed area.
Abstract:
Die Erfindung betrifft eine Vorrichtung 10 zur Versorgung einer hochfliegenden Leichtbaustruktur 60, insbesondere eines Stratosphären- oder Mesosphärenfluggeräts, mit elektrischer Energie unter Verwendung mindestens einer Solarzelle 48. Erfindungsgemäß ist mindestens ein Strahlungskollektor 12 zum Auffangen von Sonnenstrahlung 20 vorgesehen und der mindestens eine Strahlungskollektor 12 ist über mindestens ein Faserbündel 14 optisch mit mindestens einem Strahlungsemitter 16 verbunden, wobei die mindestens eine Solarzelle 48 zur Erzeugung von elektrischer Energie durch den mindestens einen Strahlungsemitter 16 mit der von dem mindestens einen Strahlungskollektor 12 aufgefangenen und durch das mindestens eine Faserbündel 14 weitergeleiteten Sonnenstrahlung 20 bestrahlbar ist. Dadurch, dass die Sonnenstrahlung 20 an einem Ort aufgefangen und an einem hiervon verschiedenen Ort in elektrische Energie konvertiert wird, lassen sich aerodynamische sowie strukturmechanische Vorteile erzielen, die unteren anderem eine signifikante Gewichtsreduktion einer mit der Vorrichtung 10 ausgestatteten hochfliegenden Leichtbaustruktur ermöglichen. Darüber hinaus hat die Erfindung eine hochfliegende Leichtbaustruktur 60 zum Gegenstand.
Abstract:
The invention relates to a method to collect meteorological data, which are used to influence the operation of at least one wind turbine. An unmanned automated vehicle is directed within a predefined ambient air-volume, which is assigned to the at least one wind turbine. The unmanned automated vehicle generates meteorological data by an instrument, while the instrument is carried by the unmanned automated vehicle. The data are related to the volume, which is assigned to the at least one wind turbine.