Abstract:
In an aspect, in general, a spooling apparatus includes a filament feeding mechanism for deploying and retracting filament from the spooling apparatus to an aerial vehicle, an exit geometry sensor for sensing an exit geometry of the filament from the spooling apparatus, and a controller for controlling the feeding mechanism to feed and retract the filament based on the exit geometry.
Abstract:
A collapsible wing, methods of producing the collapsible wing, and an unmanned aircraft system that includes the collapsible wing are provided.
Abstract:
In an aspect, in general, a spooling apparatus includes a filament feeding mechanism for deploying and retracting filament from the spooling apparatus to an aerial vehicle, an exit geometry sensor for sensing an exit geometry of the filament from the spooling apparatus, and a controller for controlling the feeding mechanism to feed and retract the filament based on the exit geometry.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
An unmanned aerial surveillance and reconnaissance system are disclosed wherein an unmanned aerial vehicle is launchable from a launch tube, for instance, the bore of an existing weapons system mounted on a mobile vehicle, such as a weapon barrel of a tank or armored combat vehicle and which the launch may be remotely initiated from the protected armored compartment of the mobile vehicle.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
An unmanned airborne reconnaissance system, the unmanned airborne reconnaissance system including a lightweight, portable, powered aircraft and a foldable launch rail, the aircraft, in a broken down condition and the launch rail in a broken down condition fitable inside a box, the box capable of being carried by one man. The launch system includes an elongated launch rail with the carriage assembly, and a propulsion means for accelerating the carriage assembly from one end of the launch rail to the other. The carriage assembly releasably engages the aircraft so as to propel the aircraft from one end of the launch rail to the other. The propulsion may be by a cartridge that explodes and releases a gas through a cylinder, or by elastic cords. The aircraft is guided through the air either by a programmed onboard computer which controls the control surfaces of the aircraft and/or by remote control. The aircraft typically contains a camera for recording and transmitting images received from the ground below.
Abstract:
A wrist programmable device (1) for making aerial videos and photos, comprising a watch strap (2) and a watch case body (4) removably coupled to said watch strap (2), said watch case body (4) having a bottom and a dial, at least videocamera means (T), hover means (13-14) for allowing said watch case body (4) to hover while separating from said watch strap (2), and programmable electronic means adapted to operatively control said at least videocamera means (T) and said hovering means (13-14).
Abstract:
The embodiments herein disclose a personal UAV kit for storing, preparing and remote control of micro UAVs (40). The UAV kit includes a base unit (10), a control unit (30) and at least one UAV. The UAVs can typically be a winged aircraft with foldable wings or a helicopter with a two-bladed or foldable rotor. The base unit comprises UAV compartments for housing at least one UAV, bay (14) for storing the control unit, batteries and electronic components for charging, communication, control and processing and storing of data. In addition, the system includes an eye near display device for viewing system information and sensor data, typically live video, transmitted from the UAV.
Abstract:
An aerial surveillance device is provided, comprising an image capturing device capable of being supported by an airframe structure above the ground. The airframe structure includes a body portion defining a longitudinal axis and configured to support the image-capturing device. A tail portion having control surfaces is operably engaged with the body portion along the axis. Transversely-extending wing portions are directly engaged with the body portion. Each wing portion is defined by longitudinally-opposed spars extending from a spaced-apart disposition at the body portion to a common connection distally from the body portion. The spars have a fabric extending therebetween to provide a wing surface. A support member extends along an aerodynamic center, transversely to the body portion, of each wing portion, to tension and rigidify the wing portions so as to provide a positive camber for the wing portions and to form an airfoil.