Abstract:
A low mass device is disclosed. The low mass device includes a body member defining a surface and a retroreflective pattern formed in the surface of the body member.
Abstract:
A low mass device is disclosed. The low mass device includes a body member defining a surface and a retroreflective pattern formed in the surface of the body member.
Abstract:
The method of fabricating a suspended microstructure with a sloped support, comprises the steps of (a) providing a member having three stacked up layers including a first substrate layer, a second temporary layer and a third photoresist layer; (b) photolithographically transferring a sloped pattern to the third photoresist layer by means of a grey scale mask; (c) etching the second layer through the third layer resulting from step (b) to obtain a surface with at least one continuous slope with a predetermined angle with respect to the first substrate layer; (d) depositing a fourth layer on the previous layers; (e) etching the fourth layer to obtain the sloped support; (f) (i) depositing a fifth planarization layer, (ii) depositing a sixth layer, and (iii) etching the sixth layer; and (g) removing the second layer and the fifth layer to obtain the suspended microstructure with the sloped support. The invention is also concerned with a suspended microstructure fabricated by the method.
Abstract:
The present invention relates to a device for interfacing nanofluidic and microfluidic components suitable for use in performing high throughput macromolecular analysis. Diffraction gradient lithography (DGL) is used to form a gradient interface between a microfluidic area and a nanofluidic area. The gradient interface area reduces the local entropic barrier to anochannels formed in the nanofluidic area. In one embodiment, the gradient interface area is formed of lateral spatial gradient structures for narrowing the cross section of a value from the micron to the nanometer length scale. In another embodiment, the gradient interface area is formed of a vertical sloped gradient structure. Additionally, the gradient structure can provide both a lateral and vertical gradient.
Abstract:
The present invention relates to a device for interfacing nanofluidic and microfluidic components suitable for use in performing high throughput macromolecular analysis. Diffraction gradient lithography (DGL) is used to form a gradient interface between a microfluidic area and a nanofluidic area. The gradient interface area reduces the local entropic barrier to anochannels formed in the nanofluidic area. In one embodiment, the gradient interface area is formed of lateral spatial gradient structures for narrowing the cross section of a value from the micron to the nanometer length scale. In another embodiment, the gradient interface area is formed of a vertical sloped gradient structure. Additionally, the gradient structure can provide both a lateral and vertical gradient.