Abstract:
The methods and apparatus make substantially water-free fused silica preforms or glass by removing water as a reaction product, from the atmosphere, removing water from the transport process, or combinations thereof. Substantially water-free soot, preforms or glass are achieved by using a hydrogen-free fuel, such as carbon monoxide, in the deposition process. Alternatively, a soot producing burner has parameters that enable operation on a substantially hydrogen-free fuel. End burners, which minimize water production, are also described. Such water-free methods are useful in depositing fluorine-doped soot efficiently. Glassy barrier layer methods and apparatus are also described for minimizing dopant migration, especially fluorine and laser and induction methods and apparatus for forming the barrier layer. A chlorine, fluorine and silica precursor, such as chlorofluorosilane, may be used. One embodiment is directed to combustion enhancing additives to the substantially hydrogen-free fuels. The methods and apparatus are useful for producing photomask substrates and optical fiber preforms.
Abstract:
A liquid containing radioactive ions is purified (decontaminated) by contacting the same with an inorganic ion exchange composition having ion exchange sites which can be occupied by the radioactive ions from the liquid. The ion exchange composition is a mixture of an ion exchange medium and an additive which is relatively inert to the ion exchange process and which is a sintering aid for the ion exchange medium designed to lower the sintering temperature of the ion exchange composition. The ion exchange composition may be disposed within a suitable container (e.g., cannister), e.g., made of 304L stainless steel or Inconel 601 and the ion exchange process may be carried out in such container. Alternatively, the ion exchange medium can be employed without being previouslz admixed with the additive. The additive, if desired, can be admixed at a later stage with the contaminated medium. Thereafter, the mixture may be sintered and disposed of in any desirable manner as by underground burial of the spent mixture within the container. Also, the container may be placed within a suitably designed furnace for carrying out the ion exchange process, sintering of the ion exchange composition and its safe disposal. Methods are also described for making a homogeneous mixture of the ion exchange medium and the additive which, for example, have a certain defined density and particle size relationship.
Abstract:
Un liquide contenant des ions radioactifs est purifié (décontaminé) en mettant ce liquide en contact avec une composition inorganique à échange ionique possédant des sites d'échange ionique qui peuvent être occupés par les ions radioactifs provenant du liquide. La composition à échange ionique est un mélange d'un milieu d'échange ionique et d'un additif qui est relativement inerte par rapport au procédé d'échange ionique et qui facilite le frittage du milieu d'échange ionique, ce qui permet d'abaisser la température de frittage de la composition à échange ionique. Cette composition peut être déposée à l'intérieur d'un récipient approprié, par exemple une boîte métallique, composée par exemple d'acier inoxydable (304L) ou d'Inconel (601) et le procédé d'échange ionique peut être exécuté dans ce récipient. Dans une variante, le milieu d'échange ionique peut être utilisé sans être au préalable mélangé à l'additif. Celui-ci peut, si on le désire, être mélangé à une étape ultérieure au milieu contaminé. Le mélange peut être fritté par la suite et éliminé d'une manière appropriée quelconque, telle que par enfouissement souterrain du mélange éteint à l'intérieur du récipient. Le récipient peut être également placé dans un four spécialement conçu, pour y exécuter le procédé d'échange ionique, le frittage de la composition à échange ionique et son élimination sûre. On décrit également des procédés permettant d'obtenir un mélange homogène du milieu d'échange ionique, et de l'additif présentant, par exemple, une relation déterminée entre la densité et la taille des particules.
Abstract:
PROBLEM TO BE SOLVED: To provide a quartz glass tool for restraining dust originating from it in an oxide film removing process represented by a pre-cleaning process or restraining an oxide attached to the quartz glass tool from adhering again as particles to a semiconductor wafer so as to improve semiconductor products in manufacturing yield, and to provide a method of recycling the same. SOLUTION: The quartz glass insulator is all formed of non-foamable material having excellent chemical-resistant properties, the insulating tool is so formed as to have a curved peripheral surface, a slope having an angle of 5° to 60° is provided to the upper part of the insulating tool, and the uppermost part of the peripheral part of the insulating tool is processed into a curve surface. COPYRIGHT: (C)2004,JPO
Abstract:
본 발명은 190nm 이하의 VUV 파장 영역 내에서 포토리소그래피 적용을 위한 포토마스크 기판용으로 적합한 고순도의 실리콘 옥시플루오라이드 유리에 관한 것이다. 도핑된 유리(20)는 도핑 용기(28) 내에서 실리콘 옥시플루오라이드 유리(22)에 O 2 도핑 분위기(26)를 제공함으로써 제조된다. 본 발명의 실리콘 옥시플루오라이드 유리는 157nm 부근의 파장에서 투과하여 157nm 파장 영역에서의 포토마스크 기판으로서 특히 유용하다. 본 발명의 포토마스크 기판은 도핑된 O 2 분자를 함유하고 진공 자외선(VUV) 파장 영역 내에서 매우 높은 투과도 및 레이저 투과 내구성을 나타내는 "건조상태"의 실리콘 옥시플루오라이드 유리이다. 본 발명의 실리콘 옥시플루오라이드 유리는 불소를 함유하고 OH 함량이 적거나 없는 것 외에, 레이저 노출에 개선된 내구성을 제공하는 간질(intersticial) O 2 분자를 함유한다. 바람직하게 O 2 로 도핑된 실리콘 옥시플루오라이드 유리는 1×10 17 분자/cm 3 미만의 수소분자 및 낮은 염소 수준을 갖는 것을 특징으로 한다.
Abstract:
본 발명은 특히 태양광 에너지 분야에 사용될 수 있는, 초투명(extra-clear) 유리 시트, 즉 에너지 투과율이 높은 유리 시트에 관한 것이다. 더 구체적으로, 본 발명은 유리의 총 중량에 대한 wt%로 나타낸 함량으로, SiO 2 60-78%; Al 2 O 3 0-10%; B 2 O 3 0-5%; CaO 0-15%; MgO 0-10%; Na 2 O 5-20%; K 2 O 0-10%; BaO 0-5%를 함유하고, 총 철(Fe 2 O 3 형태) 함량이 0.002 내지 0.03%이고, 1 내지 8.5의 망간/(총 철) 비를 포함하고, 망간 함량이 유리의 총 중량 대비 wt%의 MnO 형태로 나타낸 것인 조성물을 가진 유리 시트에 관한 것이다.
Abstract:
Bromine doping of silica glass is demonstrated. Bromine doping can be achieved with SiBr4 as a precursor. Bromine doping can occur during heating, consolidation or sintering of a porous silica glass body. Doping concentrations of bromine increase with increasing pressure of the doping precursor and can be modeled with a power law equation in which doping concentration is proportional to the square root of the pressure of the doping precursor. Bromine is an updopant in silica and the relative refractive index of silica increases approximately linearly with doping concentration. Bromine can be used as a dopant for optical fibers and can be incorporated in the core and/or cladding regions. Core doping concentrations of bromine are sufficient to permit use of undoped silica as an inner cladding material in fibers having a trench in the refractive index profile. Co-doping of silica glass with bromine and chlorine is also demonstrated.
Abstract:
The invention relates to an extra-clear glass sheet, i.e. a glass sheet with high energy transmission, which can be used in particular in the field of solar energy. Specifically, the invention relates to a glass sheet having a composition that includes, in an amount expressed in wt % for the total weight of the glass: 60-78% of SiO2; 0-10% of Al2O3; 0-5% of B2O3; 0-15% of CaO; 0-10% of MgO; 5-20% of Na2O; 0-10% of K2O; 0-5% of BaO, wherein the total amount of iron (in the form of Fe2O3) is 0.002-0.03%, and the composition includes a ratio of manganese/(total iron) of 1 to 8.5, the manganese content being expressed in the form of MnO in wt % relative to the total weight of the glass.
Abstract:
The invention relates to an optical fibre comprising a gain medium which is equipped with: a core (22) which is formed from a transparent material and nanoparticles (24) comprising a doping element and at least one element for enhancing the use of said doping element; and an outer cladding (26) which surrounds the core. The invention is characterised in that the doping element is erbium (Er) and in that the enhancing element is selected from among antimony (Sb), bismuth (Bi) and a combination of antimony (Sb) and bismuth (Bi).According to the invention, one such fibre is characterised in that the size of the nanoparticles is variable and is between 1 and 500 nanometres inclusive, and preferably greater than 20 nm.