Abstract:
A doped silica-titania glass article is provided that includes a glass article having a glass composition comprising (i) a silica-titania base glass, (ii) a fluorine dopant, and (iii) a second dopant. The fluorine dopant has a concentration of fluorine of up to 5 wt. % and the second dopant comprises one or more oxides selected from the group consisting of Al, Nb, Ta, B, Na, K, Mg, Ca and Li oxides at a total oxide concentration from 50 ppm to 6 wt. %. Further, the glass article has an expansivity slope of less than 0.5 ppb/K2 at 20° C. The second dopant can be optional. The composition of the glass article may also contain an OH concentration of less than 100 ppm.
Abstract:
A known quartz glass crucible for crystal pulling consists of a crucible wall, having an outer layer which is provided in an external area thereof with a crystallisation promoter which results in crystallisation of quartz glass, forming cristobalite when the quartz glass crucible is heated according to specified use in crystal pulling. The aim of the invention is to provide a quartz glass crucible which has a long service life. As a result, the crystallisation promoter contains, in addition to a silicon, a first component which acts as a reticulating agent in quartz glass and a second component which is free of alkali metals and which acts as an agent forming separating points in quartz glass. The above mentioned components are contained and incorporated into a doping area (8) of the outer layer (6) having a layer thickness of more than 0.2 mm.
Abstract:
To inhibit, or at least sharply attenuate, fluorescence of a quartz-glass velope (10) surrounding a light source (11), such as a halogen incandescent lamp, a high-pressure discharge lamp, or the like, when the quartz glass is subjected to ultraviolet (UV) radiation from the light source, and has been doped with a UV radiation absorbing material, typically a cerium, or cerium-titanium doping, the quartz-glass envelope is additionally doped with barium and boron. The barium/boron in the doping is, preferably, present in quantities of between about 0.008 and 1.25%, by weight, with reference to the undoped quartz glass. Barium metaborate can be used, optionally together with praseodymium to attenuate the fluorescence. Preferably, barium and boron form a combined doping substance with cerium, in form of a cerium aluminate and metaborate, added to the starting material for the quartz glass, and before the quartz glass is fused from quartz sand or pulverized quartz crystal.
Abstract:
A chemically durable porous glass of which the skeleton mainly comprises SiO.sub.2 -ZrO.sub.2 system glass having a ZrO.sub.2 content of 2 or more wt %, and a process for the production of such glass.
Abstract:
할로겐화물 가스 및 그 플라즈마를 이용하는 반도체 제조장치 또는 액정 제조장치의 부재로서 적절히 사용할 수 있는 내구성이 높은 석영글라스, 그 제조방법 및 제조용장치, 및 이를 이용한 부재 및 이 부재를 구비한 반도체 제조장치 또는 액정 제조장치를 제공한다. Mg, Ca, Sr, Ba, Y, Hf 및 Zr로 이루어지는 군에서 선택되는 1종 이상의 원소를 0.047중량% 이상 1.100중량% 이하 함유하는 것을 특징으로 하는 고(高)내구성 석영글라스, 그 제조방법 및 제조용장치, 및 이를 이용한 부재 및 장치를 사용한다. 고내구성, 석영글라스, 제조방법, 제조용장치
Abstract:
One aspect relates to a process for the preparation of a quartz glass body, including providing a silicon dioxide granulate, wherein the silicon dioxide granulate was made from pyrogenic silicon dioxide powder and the silicon dioxide granulate has a BET surface area in a range from 20 to 40 m2/g, making a glass melt out of silicon dioxide granulate in an oven and making a quartz glass body out of at least part of the glass melt. The oven has at least a first and a further chamber connected to one another via a passage. The temperature in the first chamber is lower than the temperature in the further chambers. On aspect relates to a quartz glass body which is obtainable by this process. One aspect relates to a light guide, an illuminant and a formed body, which are each obtainable by further processing of the quartz glass body.
Abstract:
A vehicular laminated glass for separating a vehicle interior from an external environment is presented. The laminated glass includes inner and outer panes made of glass and having respective thicknesses of less than or equal to 0.4 mm, and greater than or equal to 1.5 mm, and an acoustically damping intermediate layer that bonds the inner pane to the outer pane. According to one aspect, the acoustically damping intermediate layer has two outer polymeric layers between which an inner polymeric layer is positioned, the outer polymeric layers having lower elasticity or plasticity than the inner polymeric layer. According to another aspect, the inner polymeric layer has a thickness of 0.05 mm to 0.40 mm, each of the outer polymeric layers have a thickness of 0.20 mm to 0.60 mm, and the total thickness of the acoustically damping intermediate layer is at least 0.70 mm.
Abstract:
A silica container contains a substrate having a rotational symmetry, containing mainly a silica, and gaseous bubbles in a peripheral part of the substrate; a transparent silica glass in an inner peripheral part of the substrate; and an inner layer, formed on an inner surface of the substrate and containing a transparent silica glass; wherein the substrate contains Li, Na, and K in a total concentration of 50 or less ppm by weight; the substrate has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm; the inner layer contains Li, Na, and K in a total concentration of 100 or less ppb by weight and at least one of Ca, Sr, and Ba in a total concentration of 50 to 2000 ppm by weight; and the inner layer has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm.
Abstract:
A silica container contains a substrate having a rotational symmetry, containing mainly a silica, and gaseous bubbles in a peripheral part of the substrate; a transparent silica glass in an inner peripheral part of the substrate; and an inner layer, formed on an inner surface of the substrate and containing a transparent silica glass; wherein the substrate contains Li, Na, and K in a total concentration of 50 or less ppm by weight; the substrate has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm; the inner layer contains Li, Na, and K in a total concentration of 100 or less ppb by weight and at least one of Ca, Sr, and Ba in a total concentration of 50 to 2000 ppm by weight; and the inner layer has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm.