Abstract:
The present invention relates to a spectrometer (100) for analysing the spectrum of an upstream light beam (1), comprising an entrance slit (101) and collimating means (110) suitable for generating, from the upstream light beam, a collimated light beam (10), characterised in that it also comprises: a polarisation-dependent diffraction grating (120) suitable for diffracting, at each wavelength (11, 12) of the spectrum of the upstream light beam, the collimated light beam into a first diffracted light beam (11, 12) and a second diffracted light beam (21, 22); optical recombining means (130) comprising a planar optical reflecting surface (130) perpendicular to the grating and suitable for deviating at least the second diffracted light beam; and focusing means (140) suitable for focusing, at each wavelength, the first diffracted light beam and the second diffracted light beam onto one and the same focusing area (141).
Abstract:
The present invention belongs to a technical field of optical microscopic imaging and spectral measurement, and discloses a laser differential confocal mapping-spectrum microscopic imaging method and device. The core concept of the present invention is to combine the differential confocal detection and the spectrum detection techniques and use a dichroic beam splitting system (13) to separate the Rayleigh light for geometric position detection from the Raman scattering light for spectrum detection, by mean of the property that the zero-cross point of the differential confocal curve (43) accurately corresponds to the focus of the objective, the spectral information at focus of the excitation spot being accurately captured by a zero trigger to accomplish the spectrum detection with high spatial resolution. Therefore, the present invention provides a method and device that may be able to accomplish the spectrum detection with high spatial resolution to a micro-area of a sample. The advantages of the present invention include accurate positioning, high spatial resolution, high spectrum detection sensitivity and controllable size of measuring converging spot, and etc. Therefore, the present invention has broad application prospects in biomedical, forensic and other fields.
Abstract:
A lighting device includes: a light emitting device including a plurality of light emitting elements arranged in curve having a first curvature; and a honeycomb member having an extendable and contractible honeycomb structure, arranged in curve having a second curvature larger than the first curvature, in an emission direction of light emitted from the light emitting device.
Abstract:
A particle characterisation instrument (200), comprising a light source (201), a sample cell (202), an optical element (204) between the light source (201) and sample cell (202) and a detector (203). The optical element (204) is configured to modify light from the light source (201) to create a modified beam (207), the modified beam (207): a) interfering with itself to create an effective beam (208) in the sample cell (202) along an illumination axis (206) and b) diverging in the far field to produce a dark region (209) along the illumination axis (206) that is substantially not illuminated at a distance from the sample cell (202). The detector (203) is at the distance from the sample cell (202), and is configured to detect light scattered from the effective beam (208) by a sample in the sample cell (202), the detector (203) positioned to detect forward or back scattered light along a scattering axis (306) that is at an angle of 0° to 10° from the illumination axis (206).
Abstract:
Microfluidic devices for analyzing droplets are disclosed. A described microfluidic device includes a substrate and a microfluidic channel formed on the substrate. The microfluidic channel includes passages where each passage has a mask pattern configured to modulate a signal of a droplet passing through that passage, such that droplets passing through the passages produce signals. The microfluidic device also includes a detector configured to detect the signals. Methods of analyzing droplets with a microfluidic device having a microfluidic channel formed on a substrate are disclosed. A described method includes passing droplets through the passages, modulating signals from the droplets using mask patterns, formed on the passages; and detecting the signals.
Abstract:
The present invention concerns a confocal chromatic device, comprising: at least one chromatic lens (13) with an extended axial chromatism; at least one broadband light source (19); at least one optical detection means (20, 21); and at least one measurement channel (24) with a planar Y-junction (18) made with a planar waveguide optics technology, and arranged for transferring light from said at least one light source (19) towards said at least one chromatic lens (13) and for transferring light reflected back through said at least one chromatic lens (13) towards said at least one optical detection means (20, 21).
Abstract:
The present invention concerns a method for inspecting the surface of an object (10) such as a wafer comprising tridimensional structures (11), using a confocal chromatic device with a plurality of optical measurement channels (24) and a chromatic lens (13) allowing optical wavelengths of a broadband light source (19) to be focused at different axial distances defining a chromatic measurement range, the method comprising a step of obtaining an intensity information corresponding to the intensity of the light actually focused on an interface of the object (10) within the chromatic measurement range at a plurality of measurement points (15) on the object (10) by measuring a total intensity over the full spectrum of the light collected by at least some of the optical measurement channels (24) in a confocal configuration.
Abstract:
Methods and apparatus for deep microscopic super resolution imaging use two independent and variable focal planes. Movements of fiducial markers imaged using one focal plane are monitored and used to provide real-time or near real-time correction for sample drift. A second focal plane may be used to collect light for super-resolution imaging of a sample. A prototype embodiment has produced low drift when imaging many microns deeper than the fiducial markers.