METHODS AND APPARATUS FOR DETECTING NEUTRAL CHEMICAL UNITS VIA NANOSTRUCTURES
    41.
    发明申请
    METHODS AND APPARATUS FOR DETECTING NEUTRAL CHEMICAL UNITS VIA NANOSTRUCTURES 有权
    通过纳米结构检测中性化学单位的方法和装置

    公开(公告)号:US20130105686A1

    公开(公告)日:2013-05-02

    申请号:US13636935

    申请日:2011-03-24

    Abstract: Suspended nanotubes are used to capture and ionize neutral chemical units, such as individual atoms, molecules, and condensates, with excellent efficiency and sensitivity. Applying a voltage to the nanotube(s) (with respect to a grounding surface) creates an attractive potential between a polarizable neutral chemical unit and the nanotube that varies as 1/r2, where r is the unit's distance from the nanotube. An atom approaching the nanotube with a sub-threshold angular momentum is captured by the potential and eventually spirals towards the nanotube. The atom ionizes as in comes into close proximity with a sidewall of the nanotube, creating an ion whose polarity matches the polarity of the electric potential of the nanotube. Repulsive forces eject the ion, which can be detected more easily than a neutral chemical unit. Suspended nanotubes can be used to detect small numbers of neutral chemical units (e.g., single atoms) for applications in sensing and interferometry.

    Abstract translation: 悬浮的纳米管用于捕获和电离中性化学单元,例如单个原子,分子和缩合物,具有优异的效率和灵敏度。 向纳米管施加电压(相对于接地面)在可极化的中性化学单元和以1 / r2变化的纳米管之间产生有吸引力的电位,其中r是单位与纳米管的距离。 接近具有亚阈值角动量的纳米管的原子被电位俘获并最终向纳米管螺旋。 该原子电离,因为它与纳米管的侧壁紧密接近,产生极性与纳米管的电位极性匹配的离子。 排斥力推出离子,比中性化学单元更容易检出。 悬浮的纳米管可用于检测用于感测和干涉测量中的应用的少量中性化学单元(例如,单个原子)。

    FIELD EMISSION ELECTRON SOURCE HAVING CARBON NANOTUBE AND MANUFACTURING METHOD THEREOF
    42.
    发明申请
    FIELD EMISSION ELECTRON SOURCE HAVING CARBON NANOTUBE AND MANUFACTURING METHOD THEREOF 有权
    具有碳纳米管的场发射电子源及其制造方法

    公开(公告)号:US20100084957A1

    公开(公告)日:2010-04-08

    申请号:US11514595

    申请日:2006-09-01

    Abstract: A field emission electron source (10) includes a conductive base (12), a carbon nanotube (14), and a film of metal (16). The conductive base includes a top (122). One end (142) of the carbon nanotube is electrically connected with the top of the conductive base. The other end (144) of the carbon nanotube extends outwardly away from the top of the conductive base. The film of metal is formed on the nearly entire surface of the carbon nanotube and at least on the portion of the top of the conductive base proximate the carbon nanotube. A method for manufacturing the described field emission electron source is also provided.

    Abstract translation: 场发射电子源(10)包括导电基底(12),碳纳米管(14)和金属薄膜(16)。 导电基底包括顶部(122)。 碳纳米管的一端(142)与导电性基材的顶部电连接。 碳纳米管的另一端(144)向外远离导电基底的顶部。 金属膜形成在碳纳米管的几乎整个表面上,并且至少在靠近碳纳米管的导电基底顶部的部分上形成。 还提供了一种用于制造所述场致发射电子源的方法。

    CARBON NANOTUBE ELECTRON IONIZATION SOURCES
    44.
    发明授权
    CARBON NANOTUBE ELECTRON IONIZATION SOURCES 有权
    碳纳米管,ELEKTRONENIONISIERUNGSQUELLEN

    公开(公告)号:EP1683180B1

    公开(公告)日:2010-04-14

    申请号:EP04810933.4

    申请日:2004-11-12

    Abstract: An ion source for use in a mass spectrometer includes an electron emitter assembly (30) configured to emit electron beams, wherein the electron emitter assembly comprises carbon nanotube bundles fixed to a substrate for emitting the electron beams, a first control grid configured to control emission of the electron beams, and a second control grid configured to control energies of the electron beams; an ionization chamber (34) having an electron-beam inlet (38) to allow the electron beams to enter the ionization chamber, a sample inlet for sample introduction, and an ion-beam outlet (29) to provide an exit for ionized sample molecules; an electron lens (31) disposed between the electron emitter assembly and the ionization chamber to focus the electron beams; and at least one electrode (37) disposed proximate the ion-beam outlet to focus the ionized sample molecules exiting the ionization chamber.

    PHOTON ENHANCED THERMIONIC EMISSION
    46.
    发明公开
    PHOTON ENHANCED THERMIONIC EMISSION 有权
    PHOTONENVERSTÄRKTETHERMIONISCHE EMISSION

    公开(公告)号:EP2335268A2

    公开(公告)日:2011-06-22

    申请号:EP09764926.3

    申请日:2009-10-19

    CPC classification number: H01J40/06 H01J45/00 H01J2201/30434 H02S99/00

    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200 0C) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

    Method of manufacturing a field emitter electrode using an array of nanowires
    47.
    发明公开
    Method of manufacturing a field emitter electrode using an array of nanowires 审中-公开
    一种用于通过纳米线阵列的方法制造的场致发射电极的方法

    公开(公告)号:EP2244277A2

    公开(公告)日:2010-10-27

    申请号:EP10008472.2

    申请日:2007-07-25

    Abstract: The present invention relates to a method for manufacturing a field emitter electrode, in which nanowires are aligned horizontally, perpendicularly or at any angle between horizontal and perpendicular according to the direction of a generated electromagnetic field. More particularly, the present invention relates to a method for manufacturing a field emitter electrode having nanowires aligned horizontally, perpendicularly or at any angle between horizontal and perpendicular according to the direction of a generated electromagnetic field, the method comprising the steps of diluting nanowires in a solvent, dispersing the resulting solution on a substrate fixed to the upper part of an electromagnetic field generator, and fixing the nanowires aligned in the direction of an electromagnetic field generated from the electromagnetic field generator. According to the present invention, a high capacity field emitter electrode having high density nanowires aligned according to the direction of a generated electromagnetic field can be fabricated by a simple process and nanowires can be used as positive electrode materials for field emission displays (FEDs), sensors, electrodes, backlights and the like.

    Abstract translation: 本发明涉及一种用于制造场发射极电极,其中纳米线水平排列,垂直或以于所产生的电磁场的方向的水平和垂直gemäß之间的任何角度的方法。 更具体地,本发明涉及一种方法用于制造具有纳米线水平排列,垂直或以于所产生的电磁场的方向上的水平和垂直雅丁之间的任何角度的场发射电极,所述方法包括稀释的纳米线的在一个步骤 溶剂,在固定到电磁场发生器的上部所得到的基板上的溶液分散,并固定在从所述电磁场发生器产生的电磁场的方向上排列的纳米线。 。根据本发明,具有雅丁对准于所产生的电磁场的方向上具有高密度的纳米线的高容量场发射器电极可以通过简单的工艺来制造,并且纳米线可被用作用于场发射显示器的正极材料(的FED) 传感器,电极的背光源等。

    CARBON NANOTUBE ELECTRON IONIZATION SOURCES
    48.
    发明公开
    CARBON NANOTUBE ELECTRON IONIZATION SOURCES 有权
    碳纳米管电子电离源

    公开(公告)号:EP1683180A2

    公开(公告)日:2006-07-26

    申请号:EP04810933.4

    申请日:2004-11-12

    Abstract: An ion source for use in a mass spectrometer includes an electron emitter assembly (30) configured to emit electron beams, wherein the electron emitter assembly comprises carbon nanotube bundles fixed to a substrate for emitting the electron beams, a first control grid configured to control emission of the electron beams, and a second control grid configured to control energies of the electron beams; an ionization chamber (34) having an electron-beam inlet (38) to allow the electron beams to enter the ionization chamber, a sample inlet for sample introduction, and an ion-beam outlet (29) to provide an exit for ionized sample molecules; an electron lens (31) disposed between the electron emitter assembly and the ionization chamber to focus the electron beams; and at least one electrode (37) disposed proximate the ion-beam outlet to focus the ionized sample molecules exiting the ionization chamber.

    Abstract translation: 用于质谱仪的离子源包括配置成发射电子束的电子发射器组件(30),其中电子发射器组件包括固定到衬底以发射电子束的碳纳米管束,第一控制栅格,配置成控制发射 以及配置成控制电子束的能量的第二控制栅格; 具有允许电子束进入电离室的电子束入口(38)的离子化室(34),用于样品引入的样品入口和离子束出口(29),以提供离子化样品分子的出口 ; 设置在电子发射器组件和电离室之间以聚焦电子束的电子透镜(31) 和靠近离子束出口设置的至少一个电极(37),以聚焦离开电离室的离子化样品分子。

    Photon enhanced thermionic emission
    50.
    发明授权
    Photon enhanced thermionic emission 有权
    光子增强热电子发射

    公开(公告)号:US08853531B2

    公开(公告)日:2014-10-07

    申请号:US12589122

    申请日:2009-10-16

    CPC classification number: H01J40/06 H01J45/00 H01J2201/30434 H02S99/00

    Abstract: Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200° C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

    Abstract translation: 光子增强型热离子发射(PETE)被用于提高辐射能量转换效率。 一个热(大于200°C)的半导体阴极被照亮使其发射电子。 因为阴极是热的,在相同的照明条件下比在室温(或较冷)阴极发射的电子要大得多的发射电子。 作为这种增加的电子发射的结果,相对于常规光伏器件,能量转换效率可以显着增加。 在PETE中,阴极电子可以(并且通常被)相对于阴极热化。 因此,PETE不依赖于非热电子发射,并且比热载流子发射方法更容易实现。

Patent Agency Ranking