Abstract:
전자빔장치는 TDI센서(64) 및 피드스루장치(50)를 포함한다. 피드스루장치는 상이한 환경을 분리시키는 플랜지(51)에 부착된 핀(52) 및 상기 핀(52)과 쌍을 이루는 또 다른 핀(53)을 상호접속시키는 소켓컨택트954)를 가지고, 상기 핀(52), 또 다른 핀(53) 및 소켓컨택트(54)가 함께 접속블럭을 구성하고, 소켓컨택트(54)는 탄성부재(61)를 가진다. 따라서, 다수의 접속블럭이 제공되더라도, 센서내의 고장을 방지할 수 있도록 접속력이 낮은 수준으로 유지될 수 있다. 핀(53)은 TDI센서(64)와 접속되고, 상기 센서내의 픽셀어레이는, 이미지투영 광학시스템의 광학특성을 토대로 적응가능하게 구성되어 있다. 상기 센서는 다수의 통합스테이지를 가지며, 이는 시야내의 최대 수용가능한 일그러짐을 보다 크게 설정할 수 있도록 이미지투영 광학시스템의 시야를 가능한 한 작게 감소시킬 수 있다. 또한, 통합스테이지의 개수는, TDI센서의 데이터속도가 감소되지 않고, 핀의 개수가 가능한 한 많이 증가하지 않도록 결정된다. 라인 카운트의 수는 통합스테이지의 수와 거의 동일한 것이 바람직하다.
Abstract:
The invention relates to a method for determining a distance between two charged particle beamlets in a multi -beamlet exposure apparatus. The apparatus is provided with a sensor comprising a converter element (1) for converting the energy of charged particles (2) into light (3) and a light sensitive detector (5). The converter element is provided with a sensor surface area provided with a two-dimensional pattern of beamlet blocking (8) and non-blocking regions (7). The method comprises scanning a first beamlet over the two-dimensional pattern, receiving light generated by the converter element in response to charged particles being part of the first beamlet transmitted through the two-dimensional pattern, and converting the received light into a first signal by means of the light sensitive detector. Then the two-dimensional pattern and the first beamlet are moved relatively with respect to each other over a predetermined distance. Subsequently, the method continues with scanning a second beamlet over the two- dimensional pattern, receiving light generated by the converter element in response to charged particles being part of the second beamlet transmitted through the two-dimensional pattern, and converting the received light into a second signal by means of the light sensitive detector. Finally, the distance between the first beamlet and second beamlet is determined based on the first signal, the second signal and the predetermined distance.
Abstract:
A fiber optic plate assembly is provided for transferring optical signals to a detector or other optical element within an imaging device or imaging system. The fiber optic plate assembly comprises first and second fiber optic plates coupled via an optical coupling gel configured to permit separation of the two plates from each other to permit repair or replacement of one of the plates. Alternatively, the imaging device may comprise a single fiber optic plate coupled directly to an optical detector.
Abstract:
In order to improve the performance of a CCD camera (12) on a high voltage electron microscope, an electron decelerator (14) is inserted between the microscope column and the CCD (12). This arrangement optimizes the interaction of the electron beam with the scintillator (46) of the CCD camera (12) while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.
Abstract:
An apparatus designed to be positioned in the projection chamber (10) of an electron microscope to detect electron images and/or diffraction patterns from a sample and convert those electron images into light images using a scintillator (22) is provided. The apparatus transfers light images to an imaging sensor (26) for recording while enhancing resolution of the light images by using a light absorptive layer (36) on said scintillator to absorb substantially all laterally scattered light before it reaches the imaging sensor.
Abstract:
Device for the optical scanning of a recording medium, especially a phosphor storage plate (12), with a scanning head (10) which can move in relation to the recording medium and contains an imaging system in the form of an extended rotation-ellipsoidal mirror (14). The ellipsoidal mirror (14) has an inlet (16) and an outlet aperture (18) at opposite ends. A scanning laser beam (30) impinges obliquely on the storage plate (12) moving past the inlet aperture (16). A reverse-tapering chamber (20) and a photodetector (24) are connected to the outlet aperture (18).
Abstract in simplified Chinese:本发明的目的系在提供一种检查设备,其系可以高对比将检查对象之表面的凹凸之状态进行检查。检查设备具备:波束产生手段,系使荷电粒子或电磁波之任一者产生并作为波束;1次光学系统,系将波束照射在检查对象;2次光学系统,系检测从检查对象产生之次级带电粒子;以及画像处理系统,系根据所检测之次级带电粒子而形成画像。波束之照射能量系被设置在会借由波束的照射而从检查对象发佈反射镜电子作为次级带电粒子之能量区域。2次光学系统具备:摄像机,系用以检测次级带电粒子;数值孔径,系可沿着光轴方向调整位置;以及透镜,系使通过数值孔径之次级带电粒子在摄像机的像面成像。在画像处理系统中,在将数值孔径的位置设为物面进行摄影之孔径成像条件下形成画像。
Abstract in simplified Chinese:本发明关于一种用于决定在多射束曝光设备中之两个带电粒子射束之间的距离之方法。该设备备有传感器,其包含用于将带电粒子的能量转换成为光线的转换器组件与感光侦测器。该转换器组件备有传感器表面区域,其备有射束阻隔与非射束阻隔区域的二维图型。该种方法包含:将第一射束扫描在二维图型上;接收响应于其为透射通过二维图型之第一射束部分的带电粒子而由转换器组件所产生的光线;且,借由感光侦测器来将接收的光线转换成为第一信号。然后,二维图型与第一射束是关于彼此而相对移动越过一段预定距离。随后,该种方法继续为:将第二射束扫描在二维图型上;接收响应于其为透射通过二维图型之第二射束部分的带电粒子而由转换器组件所产生的光线;且,借由感光侦测器来将接收的光线转换成为第二信号。最后,在第一射束与第二射束之间的距离是基于第一信号、第二信号与预定距离来决定。