Abstract:
An embodiment of the invention is directed to a system for controlling and managing a small unmanned air vehicle (UAV) between capture and launch of the UAV. The system includes an enclosure that provides environmental protection and isolation for multiple small UAVs in assembled and/or partially disassembled states. Control and management of the UAVs includes reorientation of a captured UAV from a landing platform and secure hand-off to the enclosure, decontamination, de-fueling, ingress to the enclosure, downloading of mission payload, UAV disassembly, stowage, retrieval and reassembly of the UAV, mission uploading, egress of the UAV from the enclosure, fueling, engine testing and launch readiness. An exemplary system includes two or more robots controlled by a multiple robot controller for autonomously carrying out the functions described above. A modular, compact, portable and autonomous system of UAV control and management is described.
Abstract:
An unmanned aerial vehicle (UAV) having a design for optimum stowability and low cost. The UAV having a collapsible wing section which can be easily removed from the fuselage, allowing for quick assembly and disassembly and ease of portability. The unmanned aerial vehicle includes a primary wing assembly, a fuselage, a means for propelling the unmanned aerial vehicle , and means for remotely controlling the unmanned aerial vehicle. The primary wing assembly includes a wing having a center spar and two outwardly diverging side spars. The wing also has a pliable flexible material supported by the center spar and the at least two outwardly diverging side spars. The pylon is connected to the wing and supports the wing. The fuselage is connected to the pylon such that the pylon extends away from the fuselage and spaces the wing a distance from the fuselage. The fuselage includes a tail having a rudder located along a trailing edge and elevators located along the trailing edge.
Abstract:
A dual ducted fan arrangement in which the duct components (203), engine (10), and avionics/payload pods (300, 302) are capable of being quickly disassembled to fit within common backpacking systems. Each duct is identical in fan (201 ), stator (102), and control vane design. Assembly connections between ducted fans (203) and electronic modules are also identical. An engine (10) or APU drives the dual ducted fans (203) through a splined shaft (601) to a differential (600) or through electric motors. Energy is transferred to the ducted fans by a single gear mounted to the stator (102) hub. Relative speeds of the individual ducted fans are controlled through separate frictional or generator load control braking mechanisms (603) on each of the splined shafts (601) between the differential (600) and ducted fans (203). In the electric motor case relative speed is through electronic speed control. The fans (201 ) are counter rotating for torque balancing. The electronic module locations are vertically variable for longitudinal center of gravity for variations in payloads.
Abstract:
An air-launched aircraft (10) includes deployable wings (16, 18), elevons (20, 22), and vertical fins (26, 28) that deploy from a fuselage (12) during flight. The aircraft may include a control system for operating the elevons, a communication system, and batteries for powering the systems. In addition, the aircraft may include a payload module (14) that mates with an interface in the fuselage. The payload module may include any of a variety of payloads, including cameras, sensors, and/or radar emitters. The aircraft may be powered or unpowered, and may be very small, for example, less than on the order of 10 kg (22 pounds). The deployable surfaces of the aircraft may be configured to deploy in a pre-determined order, allowing the aircraft automatically to enter controlled flight after being launched in a tumbling mode.
Abstract:
A micro air vehicle (10) having a bendable wing (12) enabling the micro air vehicle to fly. The bendable wing (12) may be bent downwards so that the wingspan may be reduced for storing the micro air vehicle. The bendable wing (12) may be formed from one or more layers of material (22), and the wing may have a camber such that a concave surface of the wing faces downward. The wing may substantially resist flexing upwards and may transfer uplift forces to a central body of the micro air vehicle (10). In addition, the wing may be bent severely downwards by applying a force to tips (13) of the wing. The micro air vehicle is capable of being stored in a small cylindrical tube and may be deployed from the tube by simply releasing the micro air vehicle from the tube.
Abstract:
A portable unmanned air vehicle and launcher system is provided that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
A flying micro-rotorcraft unit is provided for remote tactical and operational missions. The unit includes an elongated body having an upper and a lowe end. The body defines a vertical axis. The unit further includes a navigation module including means for determining a global position of the elongated body during flight of the unit. Rotor means of the unit is coupled to the upper end of the elongated body for generating a thrust force that acts in a direction parallel to the verical axis to lift the elongated body into the air. The rotor means is located between the elongated body and the navigation module.
Abstract:
An unmanned flying vehicle comprises an autonomous flying wing having at least two wing portions arranged substantially symmetrically about a center portion. Each wing portion is pivotally attached to each adjoining portion such that the wing portions are foldable for storage and openable for deployment. A preferred form is the so-called seagull wing having four wing portions. The vehicles may be programmable from a mother aircraft whilst being borne to a deployment zone using a data link which may be wireless.