Abstract:
A customizable circuit using a programmable interconnect and a compatible TAB chip bonding design. The programmable interconnect comprises layers of wire segments forming programmable junctions rather than continuous wires. This segmentation is performed with an offset from line to line in each layer such that the ends of the segments in each layer form along diagonal lines having a pitch determined by the basic wire segment length. The terminal ends of each of these segments are positioned in a plane such that the segments may be connected by short lengths to form the desired interconnect. The links which join the line segments represent the customization of the otherwise undedicated interconnect. The TAB chip bonding design uses a carrier tape to bond the integrated circuit chips to the programmable interconnect. Also disclosed are methods for forming the interconnect and the TAB chip bonding design.
Abstract:
A method of fabricating an anodic aluminum support system having an air bridge for metallic conductors. The method includes providing two or more metal layers separated by a coating of aluminum creating a multiple layer electrical interconnect system. The method includes the step of anodizing the aluminum and applying a photoresist mask to spaced portions of the top of the system. Thereafter, an etching solution is applied to the top of the system for removing the anodized aluminum, except for the portions covered by the mask, thereby providing a multilayer conductor system supported by pillars of anodic aluminum surrounded by low dielectric air.
Abstract:
A heat exchanger for cooling or heating an object, which heat exchanger (10) comprises a plurality of spaced apart substantially parallel thermally conductive fins (18, 20) characterized in that diverting means (26, 26 b , 26 e , 26 f , 58) are provided which, when a gas is introduced in one direction into said heat exchanger (10) diverts at least part of said gas in a second direction generally perpendicular to said one direction. In one embodiment, the heat exchanger (10) comprises two interdigitated sets of oppositely facing cooling fins (18, 20) which are of generally right-angled triangular configuration. Cooling air is introduced downwardly into the heat exchanger (10) from duct (16) and is diverted horizontally by the hypotenuse of the cooling fins (18, 20). The cooling air leaves the heat exchanger (19) in mutually opposite directions through the passageways (30) formed between adjacent fins in each set of fins. The heat exchanger (10) is particularly useful as a heat sink for use with electronic chips (12). Several other embodiments are described.