Magnetic assembly of soft robots with hard components

    公开(公告)号:AU2014225893A1

    公开(公告)日:2015-09-17

    申请号:AU2014225893

    申请日:2014-03-04

    Abstract: Reconfigurable soft robotic actuators with hard components are described. Magnetic attraction is used to couple flexible molded bodies capable of actuation upon pressurization with other flexible molded bodies and/or with hard components (e.g., frames and connectors) to form a seal for fluidic communication and cooperative actuation. Pneumatic de-coupling chambers built into the hard components to de-couple the hard components from the magnetically-coupled soft molded bodies are described. The use of magnetic self-alignment coupling and pneumatic de-coupling allows for the remote assembly and disassembly of complex structures involving hard and soft components. The magnetic coupling allows for rapid, reversible reconfiguration of hybrid soft-hard robots for repair, testing new designs, and carrying out new tasks.

    Apparatus, systems, and methods for actuating pressurizable chambers

    公开(公告)号:AU2013334747A1

    公开(公告)日:2015-04-16

    申请号:AU2013334747

    申请日:2013-10-22

    Abstract: A pneumatic controller for controllably providing pressurized gas to a target location is disclosed. The pneumatic controller can include an elastomeric manifold comprising a body and a first membrane coupled to a lower portion of the body. The body and the first membrane can form a first integrated channel having a first inlet, a first outlet, and an exhaust, and the first integrated channel is configured to receive pressurized gas at a first pressure at the first inlet and provide the pressurized gas to the first outlet. The body also has a sufficient stiffness to withstand an elevated pressure of the pressurized gas. The pneumatic controller can also include an actuator configured to change the first membrane from a first configuration to a second configuration to control a flow of the pressurized gas in the first integrated channel.

    MICROFLUIDIC, ELECTROMECHANICAL DEVICES

    公开(公告)号:CA2754577A1

    公开(公告)日:2010-09-10

    申请号:CA2754577

    申请日:2010-03-08

    Abstract: Microfluidic, electrochemical devices are described. The microfluidic, electrochemical device comprises one or more electrode(s) on a substrate and a patterned porous, hydrophilic layer having a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic channels within the patterned porous, hydrophilic layer, wherein the hydrophilic channel(s) comprises a hydrophilic region which is in fiuidic communication with the electrode(s). In some embodiments, the electrodes comprise a working electrode, a counter electrode, and a reference electrode. In some embodiments, the microfluidic, electrochemical device further comprises a fluid sink. The method of assembling the microfluidic, electrochemical device is described. The method of using the device for electrochemical analysis of one or more analytes is also described.

    FLUID DELIVERY SYSTEM AND METHOD
    57.
    发明专利

    公开(公告)号:CA2564211C

    公开(公告)日:2010-08-03

    申请号:CA2564211

    申请日:2005-01-26

    Abstract: Method and device for storing and/or delivering fluids, wherein at least a first and a second fluid, such as chemical or biochemical reagents or rinse solutions, are maintained separately from each other in a common vessel and transferred in series from the vessel to a reaction site to carry out a predetermined chemical or biochemical reaction. Separation may be achieved by interposing a third fluid, e.g., a gaseous fluid plug, between the first and second fluids.

    THREE-DIMENSIONAL MICROFLUIDIC DEVICES

    公开(公告)号:CA2719320A1

    公开(公告)日:2009-10-01

    申请号:CA2719320

    申请日:2009-03-27

    Abstract: Three-dimensional microfluidic devices including by a plurality of patterned porous, hydrophilic layers and a fluid-impermeable layer disposed between every two adjacent patterned porous, hydrophilic layers are described. Each patterned porous, hydrophilic layer has a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic regions within the patterned porous, hydrophilic layer. The fluid-impermeable layer has openings which are aligned with at least part of the hydrophilic region within at least one adjacent patterned porous, hydrophilic layer. Microfluidic assay device, microfluidic mixer, microfluidic flow control device are also described.

    Three-dimensional microfluidic devices

    公开(公告)号:AU2009228091A1

    公开(公告)日:2009-10-01

    申请号:AU2009228091

    申请日:2009-03-27

    Abstract: Three-dimensional microfluidic devices including by a plurality of patterned porous, hydrophilic layers and a fluid-impermeable layer disposed between every two adjacent patterned porous, hydrophilic layers are described. Each patterned porous, hydrophilic layer has a fluid-impermeable barrier which substantially permeates the thickness of the porous, hydrophilic layer and defines boundaries of one or more hydrophilic regions within the patterned porous, hydrophilic layer. The fluid-impermeable layer has openings which are aligned with at least part of the hydrophilic region within at least one adjacent patterned porous, hydrophilic layer. Microfluidic assay device, microfluidic mixer, microfluidic flow control device are also described.

Patent Agency Ranking