Abstract:
Embodiments of the invention include a switching device that includes an electrode, a piezoelectric material coupled to the electrode, and a movable structure (e.g., cantilever, beam) coupled to the piezoelectric material. The movable structure includes a first end coupled to an anchor of a package substrate having organic layers and a second released end positioned within a cavity of the package substrate.
Abstract:
Embodiments of the invention include a microelectronic device having a sensing device and methods of forming the sensing device. In an embodiment, the sensing device includes a mass and a plurality of beams to suspend the mass. Each beam comprises first and second conductive layers and an insulating layer positioned between the first and second conductive layers to electrically isolate the first and second conductive layers. The first conductive layer is associated with drive signals and the second conductive layer is associated with sense signals of the sensing device.
Abstract:
Antennas are described for platform level wireless interconnects. In one example, a substantially flat package substrate has an attached radio. A conductive transmission line on the package substrate is electrically connected to the radio and an antenna is attached to the package substrate connected to the conductive transmission line, the antenna radiating to the side of the package.
Abstract:
Embodiments described herein may be related to apparatuses, processes, and techniques related creating millimeter wave components within a glass core of a substrate within a semiconductor package. These millimeter wave components, which include resonators, isolators, directional couplers, and circulators, may be combined to form other structures such as filters or multiplexers. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the invention include a communication module that includes a die having a transceiver and a phase shifter die that is coupled to the die. The phase shifter includes a power combiner and splitter. The communication module also includes a substrate that is coupled to the phase shifter die. The substrate includes an antenna unit with steerable beam forming capability for transmitting and receiving communications.
Abstract:
Embodiments of the invention include a microelectronic device comprising a package substrate; an antenna within the package substrate, wherein the antenna is configured to transmit or receive wireless communications with a frequency of at least 24 gigahertz; and a die physically coupled with the package substrate within the microelectronic device, wherein the die includes circuitry related to transmission or reception of a wireless communication.
Abstract:
Embodiments include a sensor node, a method of forming the sensor node, and a vehicle with a communication system that includes sensor nodes. A sensor node includes an interconnect with an input connector, an output connector, and an opening on one or more sidewalls. The sensor node also includes a package with one or more sidewalls, a top surface, and a bottom surface, where at least one of the sidewalls of the package is disposed on the opening of interconnect. The sensor node may have a control circuit on the package, a first millimeter-wave launcher on the package, and a sensor coupled to the control circuit, where the sensor is coupled to the control circuit with an electrical cable. The sensor node may include that at least one of the sidewalls of the package is crimped by the opening and adjacent and co-planar to an inner wall of the interconnect.
Abstract:
Embodiments disclosed herein include electronic packages. In an embodiment, an electronic package comprises a substrate, where the substrate comprises glass. In an embodiment, a magnetic ring is embedded in the substrate. In an embodiment, a loop is around the magnetic ring. In an embodiment, the loop is conductive and comprises a first via through the substrate, a second via through the substrate, and a trace over a surface of the substrate, where the trace electrically couples the first via to the second via.