Abstract:
The present invention relates to optical confinements, method of preparing and methods of using them for analyzing molecules and/or monitoring chemical reactions. The apparatus and methods embodied in the present invention are particularly useful for high-throughput and low-cost single-molecular analysis.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Provided are methods for enhanced sequencing of nucleic acid templates. Also provided are reaction conditions that increase branching fractions during polymerization reactions. Also provided are compositions comprising modified recombinant polymerases that exhibit branching fractions that are higher than the branching fractions of the polymerases from which they were derived. Provided are compositions comprising modified recombinant polymerases that exhibit delayed translocation relative to the polymerases from which they were derived. Also provided are compositions comprising modified recombinant polymerases that exhibit increased nucleotide or nucleotide analog residence time at an active site of the polymerase. Provided are methods for generating polymerases with the aforementioned phenotypes and methods of using such polymerases to sequence a DNA template or make a DNA. Also provided are methods and nucleic acid sequencing systems for determining which labeled nucleotide is incorporated at a site during a template-dependent polymerization reaction.
Abstract:
The present invention relates to preparation of nucleotide compositions and uses thereof for conducting nucleic acid analyses. The compositions and methods embodied in the present invention are particularly useful for nucleic acid analyses that require high-resolution detection of labeled nucleotides or labeled nucleic acid targets.
Abstract:
Composition, systems, apparatus and methods of enhancing fluorescent signals in biochemical are described. Metal particle proximity to enzymes that produce fluorescent products provide enhanced fluorescence of the product and plasmon resonance of the metal particle. Multi-labeled nucleotides enhance signal production. Reflectance of illumination light and emitted fluorescence increase signal strength for a given illumination light.
Abstract:
Isolated and/or recombinant enzymes that include surface binding domains, surfaces with active enzymes bound to them and methods of coupling enzymes to surfaces are provided. Enzymes can include large and/or multiple surface coupling domains for surface coupling.
Abstract:
Methods of monitoring enzyme mediated reactions, and particularly nucleic acid synthesis reactions such as pyrosequencing methods that employ enzymatic reporter systems. The methods and systems provide elevated signal levels as compared to conventional pyrosequencing processes, and/or mediate de-phasing of sequencing analyses employing pyrosequencing or other "sequencing by synthesis" methods.
Abstract:
Labeled reactant compositions, and particularly labeled nucleic acid reaction compositions, that include structural components that maintain potentially damaging labeling components sufficiently distal from the reactant portion of the molecule such that damaging effects of the label group on other reaction components, such as enzymes, are reduced, minimized and/or eliminated.
Abstract:
Systems and methods of enhancing fluorescent labeling strategies as well as systems and methods of using non-fluorescent and/or non-optic labeling strategies, e.g., as with single molecule sequencing using ZMWs, are described.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.