Abstract:
Certain aspects of the present disclosure provide methods and apparatus for performing coordinated multipoint (CoMP) channel state information (CSI) feedback under multiple channel and interference assumptions. One method generally includes receiving signaling indicating at least one or more interference measurement resources (IMRs) from a network and a configuration with one or more non-zero power reference signal (NZP-RS) resources in which one or more base stations transmit a RS, performing separate interference measurements at least on a per-IMR basis in one or more subframes by forming a baseline interference estimate based on the IMR and forming separate interference estimates based on adding interference from selected NZP-RS resources to the baseline interference estimate, and transmitting one or more CSI feedback reports that correspond to the interference measurements.
Abstract:
The described aspects include methods and apparatus providing MTC in a wireless network. In an aspect, a narrow bandwidth within a wide system bandwidth is allocated for communicating data related to MTC. MTC control data generated for communicating over one or more MTC control channels for an MTC UE within the narrow bandwidth is transmitted over the one or more MTC control channels. The one or more MTC channels are multiplexed with one or more legacy channels over the wide system bandwidth. Other aspects are provided for transmission mode and content of the MTC control data or other MTC data.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives an LDCS configuration for a UE relay from a second entity and monitors for an LDCS from the UE relay based on the received LDCS configuration. The second entity may comprise one of an LPN that is not in a dormant state and a Macro cell. The apparatus may receive LDCS configurations for a plurality of LPNs and monitor for a plurality of LPNs based on the received LDCS configurations. When the apparatus determines a need to connect to a LPN, the apparatus may select an LPN among the plurality of LPNs.
Abstract:
A communication environment with carrier aggregation (CA) is disclosed in which a UE is configured for communication at a first time with a first network node via a primary component carrier (PCC) and a second network node via a secondary CC (SCC). At a second time, the UE is configured for communication with a third network node via the SCC at a second time. The UE maintains communication with the first network node via the PCC without triggering handover at the UE during the establishing communication with the third network node.
Abstract:
Certain aspects of the present disclosure provide methods, apparatus, and computer-program products for improving network loading (e.g., by enabling inter-frequency handover and/or traffic offloading between neighboring base stations). In aspects, the proposed methods may include transmitting a beacon signal on a frequency (e.g., carrier frequency) other than the frequency currently used by a base station. The base station may select a cell identity (ID) and transmit one or more beacon signals on the frequency using the selected cell ID. The beacon signal may be used to decide whether or not to perform an inter-frequency handover.
Abstract:
Incremental interference cancelation (IC) capability management and signaling is disclosed. A mobile device selects certain groups of its individual IC capabilities to deactivate in response to various operating conditions it is experiencing. The mobile device reports its currently active IC capability to a serving base station, which uses information to determine whether to modify any existing communication conditions with respect to the reporting mobile device. The base station detects and analyzes the current communication conditions with respect to the reporting mobile device in light of the mobile device's currently active IC capabilities. The base station may modify such conditions through actions such as signaling the mobile device to activate or deactivate certain other groups of IC capabilities. The base station can make other modifications such as changing the communication schedule for the mobile device, modifying the control loop for channel quality indicator (CQI) reporting, and the like.
Abstract:
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to defining a structure of and enhanced physical downlink control channel (e-PDCCH). Certain aspects provide methods and apparatus for determining a search space in which a base station (eNodeB) may transmit an enhanced physical downlink control channel (e-PDCCH), wherein the search space comprises one or more fractional portions of frequency-time resources of a physical resource block (PRB) pair, and attempting to decode the e-PDCCH based on the determined search space.
Abstract:
Supporting communication on multiple carriers. A user equipment (UE) is configured with a base (anchor, regular, stand-alone) carrier and a dependent (extension) carrier linked (paired) to the base carrier. Data transmission on the dependent carrier is scheduled via a scheduling carrier, which is different from the dependent carrier. The UE receives (714) a scheduling grant on the scheduling carrier and determines whether the scheduling grant is for the base carrier and/ or the dependent carrier. The UE communicates (718), e.g. sends or receives data, on the base carrier and/or the dependent carrier based on the scheduling grant. The scheduling grant may be (i) a separate grant carrying scheduling information for only one carrier, (ii) a common grant carrying scheduling information for both carriers, (iii) a joint grant carrying separate scheduling information for each carrier, or (iv) a composite grant that may be a separate grant, a common grant, or a joint grant. A configuration of the base (anchor) carrier and a dependent (extension) carrier is received from the eNodeB at the UE.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for detecting user equipment (UE) relays using beacons (whether in-band or out-of-band) or other mechanisms. One method generally includes determining an identifier indicative of a UE functioning as a relay and transmitting a broadcast signal including the identifier. Another method generally includes receiving, at a UE functioning as a relay, first broadcast signals at a first interval from an apparatus serving the UE; and transmitting second broadcast signals at a second interval, wherein the second broadcast signals are the same type as the first broadcast signals and wherein the second interval is greater than the first interval.
Abstract:
Methods and apparatuses are provided that include selecting reference signal (RS) or other tones to utilize in estimating a channel for decoding one or more channels. Where the RS tones are interfered by other base stations, interference cancelation can be performed over the RS tones. Since interference can vary over the tones, interference cancelation can yield RS tones of varying quality. Thus, a quality of each of the RS tones can be determined, and at least a subset of the RS tones can be selected for estimating a channel. Additionally or alternatively, the RS tones can be weighted or otherwise classified for performing channel estimation using the RS tones.