Abstract:
A layer system and a method for producing the layer system are provided, the layer system having a silicon layer, on which at least regionally a passivating layer is superficially deposited, the passivating layer having a first, at least largely inorganic partial layer and a second, at least largely polymer partial layer. The method includes producing on the silicon layer, a first, inorganic partial layer, and producing on this first partial layer a second, polymer partial layer, which form the passivating layer. The production of the intermediate layer occurs in such a way that the intermediate layer in its surface area adjoining the first partial layer is composed as the first partial layer, and the intermediate layer in its surface area adjoining the second partial layer is composed as the second partial layer. The composition of the intermediate layer transitions, either continuously or in steps, from the composition corresponding to the first partial layer into the composition corresponding to the second partial layer.
Abstract:
A technique for manufacturing a piezoresistive sensing structure includes a number of process steps. Initially, a piezoresistive element is implanted into a first side of an assembly that includes a semiconductor material. A passivation layer is then formed on the first side of the assembly over the element. The passivation layer is then removed from selected areas on the first side of the assembly. A first mask is then provided on the passivation layer in a desired pattern. A beam, which includes the element, is then formed in the assembly over at least a portion of the assembly that is to provide a cavity. The passivation layer provides a second mask, in the formation of the beam, that determines a width of the formed beam.
Abstract:
A technique for manufacturing a piezoresistive sensing structure includes a number of process steps. Initially, a piezoresistive element is implanted into a first side of an assembly that includes a semiconductor material. A passivation layer is then formed on the first side of the assembly over the element. The passivation layer is then removed from selected areas on the first side of the assembly. A first mask is then provided on the passivation layer in a desired pattern. A beam, which includes the element, is then formed in the assembly over at least a portion of the assembly that is to provide a cavity. The passivation layer provides a second mask, in the formation of the beam, that determines a width of the formed beam.
Abstract:
An integrated device including one or more device drivers and a diffractive light modulator monolithically coupled to the one or more driver circuits. The one or more driver circuits are configured to process received control signals and to transmit the processed control signals to the diffractive light modulator. A method of fabricating the integrated device preferably comprises fabricating a front-end portion for each of a plurality of transistors, isolating the front-end portions of the plurality of transistors, fabricating a front-end portion of a diffractive light modulator, isolating the front end portion of the diffractive light modulator, fabricating interconnects for the plurality of transistors, applying an open array mask and wet etch to access the diffractive light modulator, and fabricating a back-end portion of the diffractive light modulator, thereby monolithically coupling the diffractive light modulator and the plurality of transistors.
Abstract:
The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of “cycles” of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.
Abstract:
The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of nullcyclesnull of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.
Abstract:
The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes. The method is also useful whenever it is necessary to maintain tight control over the dimensions of the shaped opening.
Abstract:
This disclosure provides systems, methods and apparatus including devices that include layers of passivation material covering at least a portion of an exterior surface of a thin film component within a microelectromechanical device. The thin film component may include an electrically conductive layer that connects via an anchor to a conductive surface on a substrate. The disclosure further provides processes for providing a first layer of passivation material on an exterior surface of a thin film component and for electrically connecting that thin film component to a conductive surface on a substrate. The disclosure further provides processes for providing a second layer of passivation material on any exposed surfaces of the thin film component after release of the microelectromechanical device.
Abstract:
A stacked die package for an electromechanical resonator system includes a chip that contains an electromechanical resonator bonded onto the control chip for the electromechanical resonator by a thermally and/or electrically conductive epoxy. In various embodiments, the electromechanical resonator can be a micro-electromechanical system (MEMS) resonator or a nano-electromechanical system (NEMS) resonator. Packaging configurations that may include the chip that contains the electromechanical resonator and the control chip include chip-on-lead (COL), chip-on-paddle (COP), and chip-on-tape (COT) packages. The stacked die package provides small package footprint and/or low package thickness, as well as low thermal resistance and a robust conductive path between the chip that contains the electromechanical resonator and the control chip.
Abstract:
An integrated device including one or more device drivers and a diffractive light modulator monolithically coupled to the one or more driver circuits. The one or more driver circuits are configured to process received control signals and to transmit the processed control signals to the diffractive light modulator. A method of fabricating the integrated device preferably comprises fabricating a front-end portion for each of a plurality of transistors, isolating the front-end portions of the plurality of transistors, fabricating a front-end portion of a diffractive light modulator, isolating the front-end portion of the diffractive light modulator, fabricating interconnects for the plurality of transistors, applying an open array mask and wet etch to access the diffractive light modulator, and fabricating a back-end portion of the diffractive light modulator, thereby monolithically coupling the diffractive light modulator and the plurality of transistors.