Abstract:
The invention relates to a process of forming a rough interface (12) in a semiconductor substrate (2), comprising: the formation, on a surface (4) of said substrate, of a zone of irregularities (8) in or on an oxide or a material (6) that may be oxidized, the formation of roughnesses in or on the semiconductor substrate (2) by thermal oxidation of or through this material or this oxide (6) and a part of the semiconductor substrate.
Abstract:
An apparatus and method for a silicon-based Micro-Electro Mechanical System (MEMS) device, including a pair of silicon cover structures each having a substantially smooth and planar contact surface formed thereon; a silicon mechanism structure having a part thereof that is movably suspended relative to a relatively stationary frame portion thereof, the frame portion being formed with substantially parallel and spaced-apart smooth and planar contact surfaces; a relatively rough surface disposed between the contact surfaces of the covers and corresponding surfaces of the movable part of the mechanism structure; and wherein the contact surfaces of the cover structures form silicon fusion bond joints with the respective contact surfaces of the mechanism frame.
Abstract:
A multicolor optical image-generating device comprised of an array of grating light valves (GLVs) organized to form light-modulating pixel units for spatially modulating incident rays of light. The pixel units are comprised of three subpixel components each including a plurality of elongated, equally spaced apart reflective grating elements arranged parallel to each other with their light-reflective surfaces also parallel to each other. Each subpixel component includes means for supporting the grating elements in relation to one another, and means for moving alternate elements relative to the other elements and between a first configuration wherein the component acts to reflect incident rays of light as a plane mirror, and a second configuration wherein the component diffracts the incident rays of light as they are reflected from the grating elements. The three subpixel components of each pixel unit are designed such that when red, green and blue light sources are trained on the array, colored light diffracted by particular subpixel components operating in the second configuration will be directed through a viewing aperture, and light simply reflected from particular subpixel components operating in the first configuration will not be directed through the viewing aperture.
Abstract:
A MEMS device includes a first structure including at least one first bump over a surface of the first structure, a second structure including a first side facing the surface of the first bump and a second side opposite to the first side, and a gap between the first structure and the second structure. The first structure and the second structure are configured to move in relation to each other. The first bump includes a plurality of first teeth over a stop surface of the first bump.
Abstract:
The present invention provides a silicon microphone with a high-aspect-ratio corrugated diaphragm and a microphone package including the same. The microphone comprises the corrugated diaphragm on which at least one ring-shaped corrugation is formed in the vicinity of the edge of the diaphragm which is fixed to the substrate, the corrugated diaphragm is flexible, wherein the ratio of the depth of the corrugation to the thickness of the diaphragm is larger than 5:1, preferably 20:1, and the walls of the corrugation are inclined to the surface of the diaphragm at an angle in the range of 80° to 100°. The microphone with the high-aspect-ratio corrugated diaphragm can achieve a consistent and optimal sensitivity and greatly reduce impact applied thereto in a drop test so that the performances, the reproducibility, the reliability and the yield can be improved. The microphone package of the present invention further provides a simplified processing, an improved sensitivity and an improved SNR.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing surface area between two surfaces that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of one or both of the surfaces. The increased roughness is provided by forming a micro-masking layer on a sacrificial layer used in formation of the MEMS device, and then etching the surface of the sacrificial layer. The micro-masking layer can be formed using nanoclusters. When a next portion of the MEMS device is formed on the sacrificial layer, this portion will take on the roughness characteristics imparted on the sacrificial layer by the etch process. The rougher surface decreases the surface area available for contact in the MEMS device and, in turn, decreases the area through which stiction can be imparted.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing surface area between two surfaces, such as a travel stop and travel stop region, that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of the travel stop region. This is achieved by depositing a polysilicon layer over a dielectric layer using gaseous hydrochloric acid as one of the reactants. A subsequent etch back is performed to further increase the roughness. The deposition of polysilicon and subsequent etch back may be repeated one or more times in order to obtain the desired roughness. A final polysilicon layer may then be deposited to achieve a desired thickness. This final polysilicon layer is patterned to form the travel stop regions. The rougher surface decreases the surface area available for contact and, in turn, decreases the area through which stiction can be imparted.