Abstract:
Additives for improving the low temperature flow properties and oxidative stability of hydrocarbon oils are disclosed, which comprise the alkylation of a phenol in the presence of a polar aprotic cosolvent to produce an essentially linear alkylated phenol which is condensed with an aldehyde to produce the low temperature flow improver wherein: a) the polymer composition has a number average molecular weight of at least about 3,000 and a molecular weight distribution of at least about 1.5; b) in the alkylated phenol reactant the alkyl groups (i) are essentially linear; (ii) have between 6 and 50 carbon atoms; and (iii) have an average number of carbon atoms between about 12 and 26; and c) not more than about 10 mole percent of the alkyl groups on the alkylated phenol have less than 12 carbon atoms and not more than about 10 mole percent of the alkyl groups on the alkylated phenol have more than 26 carbon atoms. The additives may also be produced in a branched backbone form in which monomer reactants are copolymerized with certain tri- or tetrafunctional comonomers. Blends of these additives with various hydrocarbon oils, and particularly various middle distillates and lubricating oil compositions, whose low temperature flow properties and oxidative stability are significantly improved thereby, are also disclosed.
Abstract:
Drag reduction of hydrocarbon fluids flowing through pipelines of various lengths is improved by polyolefin drag reducer dispersions or dispersions using bi- or multi-modal particle size distributions. Drag reducers having larger particle sizes dissolve more slowly than drag reducers having smaller particle sizes. By using at least bi-modal particle size distributions drag reduction can be distributed more uniformly over the length of the pipeline where smaller sized particles dissolve sooner or earlier in the pipeline and larger sized particles dissolve later or further along the pipeline.
Abstract:
The invention provides dispersants and dispersant viscosity index improvers which include polymers of conjugated dienes which have been hydrogenated, functionalized, optionally modified and post treated. The dispersant substances include a copolymer of two different conjugated dienes. The polymers are selectively hydrogenated to produce polymers which have highly controlled amounts of unsaturation, permitting highly selective functionalization. The polymers may be functionalized by grafting of heteroatom-containing olefins. Also provided are lubricant fluids, such as mineral and synthetic oils, which have been modified in their dispersancy and/or viscometric properties by means of the dispersant substances of the invention. Also provided are methods of modifying the dispersancy and/or viscometric properties of lubricating fluids such as mineral and synthetic lubricating oils. The dispersant substances may also include a carrier fluid to provide dispersant concentrates.
Abstract:
Cold high energy fuel compositions for jet, turbine, diesel, fuel oil, and gasoline combustion systems. More particularly, relates to fuels comprised of enhanced combustion structure.
Abstract:
The properties of oil and fuel oil compositions are improved by additive combinations comprising a polymer containing the repeating units (I, II) or (III, II) in combination with a comb-like polymer having aryl groups.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
A method of improving the combustion of a fuel by adding a catalyst or combustion enhancer at an extremely low concentration, preferably in the range of 1 part catalyst per 200 million parts fuel to 1 part catalyst per 6 trillion parts fuel. The catalyst or combustion enhancer may be selected from a wide range of soluble compounds. The method may comprise the steps of an initial mixing of the catalyst or enhancer with a suitable solvent and then subsequent dilution steps using solvents or fuel. Suitable solvents include water, MTBE, methylketone, methyisobutylketone, butanol, isopropyl alcohol and other hydrophilic/oleophilic compounds.
Abstract:
The frictional pressure drop, or drag, of hydrocarbon fluids flowing through pipelines of various lengths is preferentially lowered by dissolving therein polymeric drag reducer suspensions exhibiting bi- or multimodal particle size distributions. Drag reducers having larger particle sizes dissolve more slowly than drag reducers having smaller particle sizes, and vice versa. By using at least bi-modal particle size distributions, the drag reduction effect may be distributed more uniformly over the length of the pipeline where smaller sized particles dissolve sooner after injection (upstream in the pipeline), and larger sized particles dissolve later (further along the pipeline). Drag reducer suspensions with bi- or multimodal particle size distributions may be made by suspension polymerization.
Abstract:
The present invention relates to a method of using a block copolymer comprising monomeric units of 1,4-butadiene and at least one other comonomer addition products to lower the gel point of crude petroleum. The block copolymer comprises at least 10% by weight of at least one crystallizable block and at least one low crystallinity block.
Abstract:
Block and random straight chain and star-branched liquid copolymers of two different conjugated dienes, the residual ethylenic unsaturation of the polymerized units of one of which, e.g. isoprene, is less readily hydrogenated than that of the other diene, e.g., butadiene. In the case of block copolymers, the terminal blocks of a straight chain copolymer or the blocks of the free ends of the branches of a star-branched copolymer are composed of the less readily hydrogenated diene polymer while the more readily hydrogenated diene polymer is in the form of central blocks of a straight chain copolymer or interior blocks of the branches of a star-branched copolymer. These copolymers may be selectively hydrogenated so that substantially all of the residual ethylenic unsaturation of the more readily hydrogenated polymerized diene units are hydrogenated while enough residual ethylenic unsaturation of the less readily hydrogenated polymerized diene units remains unhydrogenated to provide sufficient sites for subsequent vulcanization or chemical modification. The combination of elastomeric properties and oxidative stability possessed by the polymers of this invention makes them suitable for many and uses such as sealants, caulks and adhesives.