Abstract:
Compositions containing unsaturated fatty esters may be stabilized against atmospheric oxidation by the addition of an antioxidant package containing a phenolic oxidant and a nonphenolic oxygen scavenger, which may be a hydroxylamine, an amine N-oxide, an oxime, or a nitrone. If an amine N-oxide is used, it may be used with or without a phenolic antioxidant. Compositions treated in this manner show good resistance to atmospheric oxidation and resultant viscosity increase.
Abstract:
Method of reduced temperature metallic vapor phase combustion for jet, turbine, diesel, fuel oil, and gasoline combustion systems. More particularly, it relates to methods and composition of metal-containing fuels comprised of enhanced combustion structure capable of increasing combustion burning velocity and reducing combustion temperature.
Abstract:
This invention is a fuel composition having a sulphur content of ≤ 50 ppm by weight and comprising ≥ 50 ppm by weight of at least one fused polycyclic aromatic compound which has at least one hetero-atom selected from O and N either (a) as a heterocyclic group, or, (b) as an exocyclic group in which the hetero-atom is attached either directly or through one other carbon atom to a ring carbon atom wherein the fused polycyclic aromatic compound is substituted on at least one of its ring carbon atoms by a C1-C4 alkyl group. These compounds are capable of improving the antiwear and lubricity properties of a low sulphur fuels, especially diesel fuels, when compared with the performance of the same fuel in the absence of such compounds.
Abstract:
Compositions including an iron containing fuel additive and a solid carrier are disclosed. Methods of preparing tablet forms of the compositions are also disclosed. The iron containing fuel additive may be ferrocene and/or substituted ferrocene derivatives. The compositions are useful for handling and rapidly solvating the iron containing fuel additive in a fuel such as gasoline.
Abstract:
Compositions containing unsaturated fatty esters may be stabilized against atmospheric oxidation by the addition of an antioxidant package containing a phenolic oxidant and a nonphenolic oxygen scavenger, which may be a hydroxylamine, an amine N-oxide, an oxime, or a nitrone. If an amine N-oxide is used, it may be used with or without a phenolic antioxidant. Compositions treated in this manner show good resistance to atmospheric oxidation and resultant viscosity increase.
Abstract:
A composition comprising:(A) a first component selected from the group consisting of:(i) an oil-soluble ethylene backbone polymer having a number average molecular weight in the range of about 500 to about 50,000;(ii) a hydrocarbyl-substituted phenol of the formula(R*).sub.a -Ar-(OH).sub.b Iwherein R* is a hydrocarbyl group selected from the group consisting of hydrocarbyl group of from about 8 to about 30 carbon atoms and polymers of at least 30 carbon atoms, Ar is an aromatic moiety having 0 to 4 optional substituents selected from the group consisting of lower alkyl, lower alkoxyl, nitro, halo or combinations of two or more of said optional substituents, and a and b are each independently an integer of 1 up to 5 times the number of aromatic nuclei present in Ar with the proviso that the sum of a and b does not exceed the unsatisfied valences of Ar;(iii) mixtures of (i) and (ii); and(B) as a second component, the reaction product of (B)(I) a hydrocarbyl-substituted carboxylic acylating agent with (B)(II) one or more amines, one or more alcohols, or a mixture of one or more amines and/or one or more alcohols, the hydrocarbyl substituent of said agent (B)(I) being selected from the group consisting of(i') one or more mono-olefins of from about 8 to about 30 carbon atoms;(ii') mixtures of one or more mono-olefins of from about 8 to about 30 carbon atoms with one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of polymers of mono-1-olefins of from 2 to 8 carbon atoms, or the chlorinated or brominated analogs of such polymers; and(iii') one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of(a) polymers of mono-olefins of from about 8 to about 30 carbon atoms;(b) interpolymers of mono-1-olefins of from 2 to 8 carbon atoms with mono-olefins of from about 8 to about 30 carbon atoms;(c) one or more mixtures of homopolymers and/or interpolymers of mono-1-olefins of from 2 to 8 carbon atoms with homopolymers and/or interpolymers of mono-olefins of from about 8 to about 30 carbon atoms; and(d) chlorinated or brominated analogs of (a), (b), or (c).