Abstract:
Provided is a spectrophotometric device including a base plate including a first surface to accommodate a sample thereon, a rotatable plate including a second surface corresponding to and spaced a certain distance apart from the first surface, a test beam radiator connected to the first surface through a first beam guide to radiate a test beam to the sample accommodated on a beam path between the first and second surfaces, a spectrophotometer connected to the second surface through a second beam guide to analyze spectroscopic properties of the sample by analyzing a characteristic beam having passed through the sample accommodated on the beam path, and a state determiner provided near the beam path to determine whether the sample accommodated between the first and second surfaces is in a state in which analysis of optical properties is enabled.
Abstract:
An imaging apparatus includes an illumination light source to output an illumination light, an illumination optical system to transmit the illumination light toward a sample, an imaging optical system to transmit light reflected from the sample, a stage to move the sample in a predetermined transfer direction, and a photographing unit to receive the reflected light. The imaging apparatus may include one or more diffraction grids located at conjugate focal planes of the sample. The operation of the photographing unit may be synchronized with a movement of the sample by the stage to obtain an image in accordance with a time delay integration method.
Abstract:
A photometric processing part calculates a normal vector of a surface of a workpiece from a plurality of luminance images acquired by a camera in accordance with the photometric stereo method, and performs synthesis processing of synthesizing at least two images out of an inclination image made up of pixel values based on the normal vector calculated from the plurality of luminance images and at least one reduced image of the inclination image, to generate an inspection image showing a surface shape of the inspection target. In particular, a characteristic size setting part sets a characteristic size which is a parameter for giving weight to a component of a reduced image at the time of performing the synthesis processing. The photometric processing part can generate a different inspection image in accordance with the set characteristic size.
Abstract:
Methods and systems are provided, which pattern an illumination of a metrology target with respect to spectral ranges and/or polarizations, illuminate a metrology target by the patterned illumination, and measure radiation scattered from the target by directing, at a pupil plane, selected pupil plane pixels from a to respective single detector(s) by applying a collection pattern to the pupil plane pixels. Single detector measurements (compressive sensing) has increased light sensitivity which is utilized to pattern the illumination and further enhance the information content of detected scattered radiation with respect to predefined metrology parameters.
Abstract:
The present disclosure concerns an apparatus (10) and method for reading out an optical chip (20). A light source (13) is arranged for emitting single mode source light (S1) from its emitter surface (A1) towards an optical input (21) of the optical chip (20). A light detector (14) is arranged for receiving measurement light (S2) impinging onto its receiver surface (A2) from an optical output (22) of the optical chip (20), and measuring said received measurement light (S2). The emitted source light (S1) is aligned to enter the optical input (21) of the optical chip (20) and the measurement light (S2) is aligned back onto the receiver surface (A2). The receiver surface (A2) is larger than the emitter surface (A1) for facilitating the overall alignment.
Abstract:
The invention relates to a detection apparatus (1) for detecting particles on or close to a particles detection surface (5) in a first optical detection mode and in a second optical detection mode, wherein a component of a light detection system (8) and/or a component of an optical system (9) of the detection apparatus is arranged to be used in the first detection mode and in the second detection mode. Since a component of the light detection system and/or a component of the optical system is arranged to be used in the first detection mode and in the second detection mode, this component does not need to be provided twice, i.e. for being used in the first detection mode and for being used in the second detection mode. This can lead to a reduced number of components and can make the detection apparatus technically less complex.
Abstract:
An image inspection apparatus includes: an imaging section for capturing an image of a workpiece from a certain direction; an illumination section for illuminating the workpiece from different directions at least three times; an illumination controlling section for sequentially turning on the illumination sections one by one; an imaging generating section for driving the imaging section to generate a plurality of images; a normal vector calculating section for calculating a normal vector with respect to the surface of the workpiece at each of pixels by use of a pixel value of each of pixels having a corresponding relation among the plurality of images; and a contour image generating section for performing differential processing in an X-direction and a Y-direction on the calculated normal vector at each of the pixels, to generate a contour image that shows a contour of inclination of the surface of the workpiece.
Abstract:
A clogged filter detector has a transmitter and a sensor which are held in place by a transmitter bracket and a sensor bracket, respectively. The transmitter emits a beam of electromagnetic radiation, and the sensor is positioned in the path of this beam at a point such that the beam travels through a filter between the transmitter and the sensor. The transmitter and sensor are misaligned with the air flow at the point where the beam contacts the filter. The transmitter alternates between a transmitting mode and a dormant mode, and the transmitter emits a plurality of electromagnetic pulses during each transmitting mode.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.