Abstract:
Radiation scattering is one of the main contributors to the uncertainty of near infrared (NIR) measurements. Enhanced absorption-measurement accuracy for NIR sensors is achieved by using a combination of NIR spectroscopy and time-of-flight techniques to select photons that are the result of a given mean free path within a moving sample target. By measuring absorption as a function of path length or by windowing signals that are attributable to excessive scattering of NIR radiation within the sample, this technique affords the calculation of more accurate and more universal calibrations. The NIR sensor employs short or ultra-short laser pulses to create NIR that is directed to the moving sample and emerging radiation is detected over time. Windowing effectively truncates non-contributing measurements.
Abstract:
There is described a method of determining the UV fluence received by a fluid. The method comprises the steps of: (a) irradiating the fluid at an unknown UV fluence; (b) measuring the fluorescence of a test sample of the fluid after irradiation in Step (a) to produce a test signal proportional to the concentration of a prescribed fluorescent composition of matter comprised in the test sample; and (c) determining the value of the unknown UV fluence by comparing the test signal to a calibration curve of a control signal proportional to concentration of the prescribed fluorescent composition of matter in the fluid as a function of applied UV fluence. There is also described a system for determining the UV fluence received by a fluid being treated in UV fluid treatment system comprising at least one UV source. The system comprises: (a) a radiation-transparent vessel for receiving a test sample of the fluid after irradiation of the fluid at an unknown UV fluence; (b) a fluorometer for measuring the fluorescence of the test sample received in the radiation-transparent vessel to produce a test signal proportional to the concentration of a prescribed fluorescent composition of matter comprised in the test sample; and (c) a controller configured to determine the value of the unknown UV fluence by comparing the test signal to a calibration curve of a control signal proportional to concentration of the prescribed fluorescent composition of matter in the fluid as a function of applied UV fluence.
Abstract:
Compositions and methods for increasing fluorescent signals generated by biomarkers are described. This serves to increase the accuracy of results when the biomarkers are used for the detection and diagnosis of physiological conditions, such as organ function and plasma volume.
Abstract:
In one aspect, the disclosure provides methods for using NMR and NIR to evaluate biological samples. In some embodiments, the methods include a step of performing a Nuclear Magnetic Resonance (NMR) analysis on a sample to obtain an NMR spectrum, a step of performing a Near Infrared Spectroscopy (NIR) analysis on the sample to obtain an NIR spectrum, and/or a step of performing a data fusion analysis to evaluate the NIR spectrum.
Abstract:
Conformément à l'invention, on utilise comme étalon de l'automate une solution aqueuse contenant une petite quantité, par exemple 0,01 à 1 mg/l d'eau, d'un agent tensioactif, de préférence choisi dans le groupe des acides gras et des agents tensioactifs non ioniques. Application à l'analyse automatique d'une eau polluée par des composés hydrocarbonés, notamment à l'état de traces.
Abstract:
Apparatus and methods may provide for determining a value of chemical parameter. One or more light emitters may be positioned within a housing to emit light through an aperture of the housing. The emitted light may illuminate a color area of a structure that is separable from the housing, such as a test strip, a printed color reference, and so on. A color sensor may be positioned within the housing to capture reflected light and to convert the reflected light to an initial digitized color space that may be usable to determine a color shade of a color area. The reflected light may, for example, be captured independently at least of a dimension (e.g., predetermined size, shape, etc.) of the color area.
Abstract:
In order to inspect a substrate, an image information of a substrate before applying solder is displayed. Then, at least one inspection region on the substrate is image-captured to obtain an image of the inspection region that is image-captured. Then, image information that is to be displayed is renewed and the renewed image information is displayed. And, in order to inspect a foreign substance, obtained image of the inspection region is compared with a reference image of the substrate. Therefore, an operator can easily catch a region corresponding to a specific region of the image that is displayed, and easily detect a foreign substance on the substrate.
Abstract:
The present invention relates to a method of generating reference data for inspecting a circuit board. The method comprises steps of scanning a bare circuit board to obtain image information of the bare circuit board, generating a compensation matrix using pad coordinate information extracted from the image information and pad coordinate information prestored in design data, and generating, by applying the compensation matrix to the image information, a reference data including coordinate information of a distinctive object. According to the method, inspection efficiency may optimized through quickly generating reference data without CAD information necessary for circuit board inspection.