Abstract:
A photomultiplier comprising an electron multiplier for minimizing a variation in multiplication factor and noise is characterized in that insulating members are aligned on the same line to insulate a plurality of dynode plates for constituting a dynode unit from each other, thereby preventing a damage to each dynode plate. At the same time, a through hole is formed to fix the insulating member provided to each dynode plate such that a gap is provided between the major surface of the dynode plate and the surface of the insulating member, thereby preventing discharge between dynode plates, which is caused due to dust or the like deposited on the surface of the insulating member.
Abstract:
An X-ray imaging tube which comprises a vacuum envelope, an input screen comprising a substrate located in the input end of the envelope, an input phosphor layer formed on the substrate and comprising a number of columnar phosphor crystals, and a photoelectric layer formed directly or indirectly on the input phosphor layer, an anode and an ouput screen located in the output end of the envelope, and a beam-converging electrode located in the envelope and extending along the inner surface of the envelope. The tube further comprising optically opaque layers which are formed in each columnar crystal and extending from the surface thereof. A method of manufacturing an X-ray imaging tube, disclosed herein, comprises the steps of vapor-depositing a predetermined phosphor on a substrate, thereby forming on the substrate an input phophor layer consisting of columnar crystals, vapor-depositing a predetermined material, thereby forming an optically opaque layer on the tip of each columnar crystal, sputtering the optically opaque layer, thereby removing a part of the optically opaque layer formed on the tip of the columnar crystal, vapor-depositing said predetermined phosphor, and, if necessary, repeating these steps, thereby forming a plurality of optically opaque layers in each columnar crystal, which extend from circumferential surface of the columnar crystal.
Abstract:
Alkali metal source comprises a powder of silicon or germanium grains having a shell of a compound of silicon or germanium and the alkali metal.
Abstract:
Disclosed is a method for the fabrication of an X-ray image intensifier tube. Before being introduced into the X-ray image intensifier, one of all the electrodes are entirely or partially covered with a layer of an orgainc polymer which is an electronic conductor of electricity and which has the property of reacting chemically with the alkaline metals deposited on the electrodes. Thus, the spurious illumination of the observation screen, due to the alkaline metals deposited on the electrodes during the preparation of the photocathode, is eliminated.
Abstract:
An electron discharge tube comprises an evacuated envelope, a photocathode within the envelope and a primary dynode having an active portion substantially coplanar with the photocathode. The active portion of the dynode has an oxide secondary emitting surface. A substantially uniform layer of an alkali antimonide compound is formed on substantially all of the oxide secondary emissive surface of the dynode.
Abstract:
An alkali metal generating agent (1) for use in forming a photoelectric surface emitting a photoelectron corresponding to an incident light or a secondary electron emission surface emitting a secondary electron corresponding to an incident electron, which comprises an oxidizing agent comprising at least one vanadate having an alkali metal ion as a counter cation and a reducing agent for reducing the above cation. The above metal generating agent (1), which includes a vanadate having weaker oxidizing power than that of a chromate, undergoes slower oxidation-reduction reaction, which results in easier reaction rate control as compared to a conventional technique using a chromate, leading to the generation of an alkali metal with good stability.