Abstract:
The present disclosure relates to reducing unwanted RF noise in a printed circuit board (PCB) containing an RF device. An isolation filter is embedded in a PCB containing an RDF device. By placing the isolation filter as close as possible to the RF device in order to dramatically reduce unwanted RF noise due to unavoidable coupling between Vias and planes in the PCB structure.
Abstract:
An electrical connector electrically connects either an adaptor board or an electrical component to a main circuit board through the use of a thin printed circuit having an array of pads one each side where on one side the pads are connected to a main circuit board by solder balls, solder columns conductive epoxy or any other way practiced in the art and on the other side of the thin circuit the pads are connected to an adaptor board by a conductive compliant elastomeric material. The sides of the thin printed circuit are electrically connected to one another in ways practiced in the art.
Abstract:
The present invention relates to a method and an apparatus for a resurfaceable contact pad that uses; an epoxy to encapsulate contact pads so that the epoxy and encapsulated contact pads are coplanar on a silicon redistribution interposer. These redistribution interposers electrically connect a wafer semi-conductor to a probe card where it is necessary to convert the course pad arrangement of one with a fine pad arrangement of the other through the use of an interposer board. The present invention relates to an apparatus and a method creates resurfaceable contact pads which may be resurfaced one or multiple times with an abrasive sanding operation to recreate a coplanar surface should any contact pad surfaces become damaged, allowing for a more cost- effective repair.
Abstract:
A method and an electrical interconnect mechanism in which elastomeric pins are printed onto metal retainer tabs having at least one protrusion or tab extending laterally therefrom to engage a catch or recess of the laminated housing so as to locate each of the elastomeric pins and secure them within the housing. In one embodiment a champher may be employed with a catch or recess to engagely secure a second protrusion or tab extending laterally from another side of said elastomeric pin. In another embodiment the elastomeric pin may have a solid metal ring or a slide collar around the center of the pin wherein the ring has one or two tabs for engaging the recess in the housing and if preferred also the recess of a champfer.
Abstract:
The present disclosure relates to reducing unwanted RF noise in a printed circuit board (PCB) containing an RF device. An isolation filter is embedded in a PCB containing an RDF device. By placing the isolation filter as close as possible to the RF device in order to dramatically reduce unwanted RF noise due to unavoidable coupling between Vias and planes in the PCB structure.
Abstract:
An electrical connector electrically connects either an adaptor board or an electrical component to a main circuit board through the use of a thin printed circuit having an array of pads one each side where on one side the pads are connected to a main circuit board by solder balls, solder columns conductive epoxy or any other way practiced in the art and on the other side of the thin circuit the pads are connected to an adaptor board by a conductive compliant elastomeric material. The sides of the thin printed circuit are electrically connected to one another in ways practiced in the art.
Abstract:
The present disclosure provides for attaching and embedding a capacitance or a resistance directly in an adaptor board or an interposer board that is then connected to the main circuit board. The adaptor board can be connected to the main circuit board by soldering, electrically connecting it by a conductive elastomer connection, spring pins or by any other way that is known in the art.
Abstract:
The present disclosure relates to embedding a power modification component such as a capacitance or a resistance inside of pads that are located to extend over and beyond the vias of the PCB so that a portion of the pad containing the embedded capacitance or resistance is located beyond where the vias or blinds are located. Each of the pads will include an opening that is located over a given one of the vias or blinds to permit that via to conduct through the opening. In this way the capacitance and the resistance will have a closer contact point the electrical component.
Abstract:
A method and a structure with multiple implementations is provided that depends on the specific need, for placing (embedding) a serial loopback circuit of known design in a printed circuit board directly beneath the device under test. Micro-vias and traces connect components including transmitter components (TX) and receiver components (RX) that are formed into a loopback circuit for connection to a device under test (DUT). The connection is accomplished by a coupling capacitor with a shortest possible electrical length approximating a straight line between said components and said DUT and said distance is a length of said short straight line times a square root of 2 so that said receiver components are beneath the DUT.
Abstract:
The present invention provides for a structure and a mechanism by which by utilizing additive manufacturing processes electrical connections are created that connect the top and bottom of a block in a customizable pattern. Specifically connection points can be created on the surface of the block and route them to alternate locations transforming the original pattern to a smaller, larger, or alternate pattern.