Abstract:
A seat pan for a passenger seat and a passenger seat. The seat pan is corrugated for partially absorbing a downward loading applied to the seat pan through deformation of a corrugation pattern of the seat pan as a result of a counter force applied by a support structure of the passenger seat.
Abstract:
Various embodiments provide a rotor-arm assembly for a multi-rotorcraft, the rotor-arm assembly comprising: a plurality of rotor-arms, each rotor-arm comprising a rotor assembly at a distal end portion and a body portion connector at a proximal end portion, the body portion connector having a screw thread; and a body portion comprising a plurality of rotor-arm connectors, each rotor-arm connector having a screw thread; wherein the screw-thread of each body portion connector is configured in use to engage with the screw-thread of one of the rotor-arm connectors to detachably attach each rotor-arm to the body portion.
Abstract:
Various embodiments provide a portable electronic device holder (400, 500, 600, 700, 900, 1100, 1400) for a passenger seat (202), including a longitudinal clamping structure (420, 520) having a generally L-shaped cross-section. The clamping structure includes a supporting flap (422, 522) forming an L-base of the generally L-shaped clamping structure and configured to support a portable electronic device, and a clamping flap (424, 524) forming an L-leg of the generally L-shaped clamping structure and configured to clamp the portable electronic device against a surface (650) abutting the portable electronic device. The portable electronic device holder further includes a mounting element (410, 510) for slidably or titlably mounting the clamping structure to the passenger seat.
Abstract:
An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.
Abstract:
A headrest structure for a passenger seat, a headrest cushion and passenger seat. The headrest structure comprises an adjustable headrest frame for connection to a passenger seat; and a headrest cushion mounted to the adjustable headrest frame such that the headrest cushion is moveable relative to a seat back of the passenger seat by way of the adjustable headrest frame; wherein the headrest cushion comprises a support surface facing away from the headrest frame, the support surface comprising a concave upper part and a convex bottom part relative to the passenger seat.
Abstract:
Various embodiments provide a method for landing an unmanned aerial vehicle (UAV) in the presence of a wind. The method comprises: performing a first flare-maneuver whilst the UAV is flying. The flare-maneuver causes a front portion of the UAV to rise with respect to a rear portion of the UAV. The method also comprises steering the UAV along a path heading into a direction of the wind. The method further comprises performing a second flare-maneuver before the UAV impacts a landing surface to land. Various embodiments provide a corresponding UAV.
Abstract:
A seat structure for a passenger seat, and a passenger seat. In one embodiment, the seat structure comprises a seat pan for mounting on a frame structure of the passenger seat in a manner such that the seat pan is moveable in forward and backward directions relative to the frame independently from movement of a seat back of the passenger seat; and biasing means for biasing the seat pan in a default position.
Abstract:
Various embodiments provide a method for improving crosswind stability of a propeller duct. The method comprises defining an initial duct section based on a predetermined airfoil section having an initial value of a geometric parameter such that the geometric parameter of a portion of the initial duct section has the initial value. The method also comprises determining fluid flow paths around the initial duct section when subject to a crosswind having a predetermined crosswind speed. The method further comprises varying the initial value of the geometric parameter of the initial duct section to a threshold value which causes separation of fluid flow paths at a windward side of the initial duct section at and above the predetermined crosswind speed to form an improved duct section. Various embodiments provide a corresponding apparatus, system and/or computer readable medium.
Abstract:
Disclosed herein is a collapsible wing assembly of an unmanned aerial vehicle (UAV) and a method of locking and unlocking the collapsible wing assembly of an unmanned aerial vehicle (UAV). The collapsible wing assembly comprising a centre wing adapted to be attached to the fuselage; and a pair of outboard wings, wherein each of the outboard edges of the centre wing comprises a first attachment structure, and each of the inboard edges of the outboard wings comprises a second attachment structure, wherein the first attachment structure is operable to engage with the second attachment structure and displace the second attachment structure to a captive position towards the trailing edge of the centre wing.
Abstract:
A seat leg assembly for a passenger seat includes a brace member to extend from a front end of a base frame of the passenger seat to a rear floor fitting; a front leg to extend from a front floor fitting to the brace member and connected to the brace member; a rear leg portion extending from a rear end of the base frame to the brace member; and a first joint structure connecting the rear leg portion to the brace member.