Abstract:
본 발명에 따른 광송신기는, 복수 주입 채널들로 이루어진 주입광을 출력하기 위한 다파장 광원과; 제1 내지 제3 포트들을 구비하며, 제1 포트에 입력된 상기 주입광을 제2 포트로 출력하고, 제2 포트에 입력된 신호광을 제3 포트로 출력하기 위한 순환기와; 상기 순환기의 제2 포트와 연결된 다중화 포트와 복수의 역다중화 포트들을 구비하며, 상기 다중화 포트에 입력된 상기 주입광을 복수 주입 채널들로 스펙트럼 분할하여 상기 역다중화 포트들로 출력하고, 상기 역다중화 포트들에 입력된 복수의 신호 채널들을 신호광으로 다중화하여 상기 다중화 포트로 출력하기 위한 도파로열 격자와; 상기 역다중화 포트들과 일대일 연결되며, 각각 입력된 해당 주입 채널을 증폭한 신호 채널을 출력하기 위한 복수의 반사형 반도체 광증폭기들을 포함한다.
Abstract:
본 발명에 따른 페브리-페롯 레이저를 이용한 파장분할다중 방식의 광송신기는, 기설정된 파장 대역의 비간섭성 광을 출력하는 광원과; 제1 내지 제3 포트를 구비하며, 상기 광원과 연결된 제1 포트에 입력된 비간섭성 광을 제2 포트로 출력하고, 제2 포트에 입력된 광신호를 외부 도파로와 연결된 제3 포트로 출력하는 써큘레이터와; 상기 써큘레이터의 제2 포트와 연결된 다중화 포트와 다수의 역다중화 포트를 구비하며, 다중화 포트에 입력된 비간섭성 광을 파장분할 역다중화하여 다수의 역다중화 포트로 출력하고, 다수의 역다중화 포트에 입력된 다수의 채널을 파장분할다중화하여 다중화 포트로 출력하는 도파로형 회절 격자와; 상기 도파로형 회절 격자의 역다중화 포트들과 일대일 대응되며, 각각 공진기와, 해당 역다중화 포트와 대향된 상기 공진기의 일단에 코팅된 무반사층과, 상기 공진기의 타단에 코팅된 고반사층을 구비하는 다수의 페브리-페롯 레이저를 포함하여, 광 주입의 효율을 높이고 반사광의 영향을 줄임으로써 파장 잠김 현상을 더욱 용이하게 한다.
Abstract:
본 발명의 WDM 광원은 스펙트럼 분할방식을 채택함으로써 특정 발진 파장의 광원 및 파장 안정화를 위한 파장안정화회로를 필요로 하지 않는 다는 장점이 있다. 또한, 본 발명의 WDM 광원은 고출력의 선폭이 매우 좁은 WDM 신호를 제공함으로써, 색분산 효과에 의한 신호의 왜곡없이 방송형 서비스를 제공할 수 있으며 고가의 증폭기 및 외부 변조기를 별도로 부가하지 않아도 된다는 장점이 있다. 즉, 본 발명의 WDM 광원은 가입자들에게 경제적인 부담을 주지 않는 다는 장점이 있다. 이로 인해 본 발명은 WDM-PON의 실용화를 촉진시킬 수 있으며, 본 발명의 WDM 광원을 이용한 WDM-PON은 방송형 서비스를 경제적으로 제공할 수 있다는 장점이 있다.
Abstract:
A WDM(Wavelength Division Multiplexed) PON(Passive Optical Network) using a wavelength-seeded light source is provided to transmit up/down data by directly modulating a wavelength-seeded light source without using a high-priced external modulator, thereby realizing an economical WDM-PON system. A CO(Central Office)(100a) comprises as follows. Two wideband light sources(150a,160a) have different wavelength bands of outputted optical signals. A WDM(130a) multiplexes/demultiplexes up/down signals having different wavelengths. A 1/N waveguide diffraction grating(140a) demultiplexes the multiplexed up signals while multiplexing the down signals. An RN(Remote Node)(200a) includes a 1/N waveguide-type diffraction grating(210a) for demultiplexing the multiplexed down signals while multiplexing the up signals. A subscriber device(300a) includes down optical receivers(320a), up wavelength-seeded light sources(310a), and a WDM(330a) for multiplexing/demultiplexing up/down signals having different wavelengths.
Abstract:
A wavelength division multiplexing optical transmitter using a WGL(Wideband Gain Laser) is provided to solve a problem that a wavelength division multiplexing optical transmission system using a Fabry-Perot laser costs a large amount of system operation fee because each channel must use a particular Fabry-Perot laser. An ASE(Amplified Spontaneous Emission) source(110) outputs non-interference light of a pre-set wavelength band. A circulator(120) outputs the non-interference light which has been received from the ASE source(110) to a WDM(130), and outputs an optical signal received from the WDM(130) to a connected optical transmission link. The WDM(130) demultiplexes the non-interference light which has been received from the circulator(120) to WGLs(Wideband Gain Lasers)(140-1-140-n).
Abstract:
PURPOSE: A WDM(Wavelength Division Multiplexed) PON(Passive Optical Network) using a multi-frequency lasing light source and a reflective optical amplifier is provided to integrate a multiplexer/demultiplexer for generating a multi-frequency lasing light source with a multiplexer/demultiplexer for receiving an upper signal in a CO(Central Office), thereby realizing an economical CO. CONSTITUTION: A CO(600) comprises a multi-frequency lasing light source. Plural subscriber devices(800) transmit upper signals by multi-frequency reflective signals sent from the CO(600). A local base station device(700) is connected with the subscriber devices(800) and the CO(600) through a transmission optical fiber, demultiplexes the multi-frequency signals sent from the CO(600) to transmit the demultiplexed signals to the subscriber devices(800), and multiplexes signals received from each of the subscriber devices(800) to transmit the multiplexed signals to the CO(600).
Abstract:
Disclosed is a Fabry-Perot laser device connected with an optical transmission link. The device comprises an optical circulator for forming an optical waveguide loop and circulating light through the optical waveguide loop and for outputting light from the optical waveguide loop through an external port; an optical fiber amplifier located on the optical waveguide loop and for amplifying the light circulating in the optical waveguide loop; a laser light source connected with the exterior port and being self-seeded by the light inputted through the exterior port and for outputting wavelength-locked light to the exterior port; and, a first splitter located on the loop for splitting a portion of the circulating light and for outputting the split-off light to the optical transmission link.
Abstract:
PURPOSE: A self recovering WDM(Wavelength Division Multiplexed) PON(Passive Optical Network) is provided to sense malfunction of an optical fiber for connecting a central base station with a subscriber device and up/down optical transceivers located in the central base station and the subscriber device, by using a protective optical fiber, thereby quickly recovering from the malfunction. CONSTITUTION: When a defect is generated in a one-strip trunk optical fiber for connecting a central base station(300) with a local base station(320), a protective trunk optical fiber(312) functions as an operating optical fiber between the central base station(300) and the local base station(320). When each distributive optical fiber for connecting the local base station(320) with each subscriber device(340) has a failure, a protective distributed optical fiber(332) functions as an operating optical fiber between the local base station(320) and each subscriber device. The central base station(300) and each subscriber device(340) include protective components for coping with failures.
Abstract:
PURPOSE: A method for maintaining a mode-locked state of a Fabry-Perot laser regardless of a variation of external temperature and a WDM type light source using the same are provided to maintain the mode-locked state without a temperature controller by controlling a bias of a Fabry-Perot laser according to a wavelength relation between a scanning beam and an oscillation mode. CONSTITUTION: A WDM type light source includes a Fabry-Perot laser and a bias control unit. The Fabry-Perot laser(210) is used for scanning a spectrum-sliced incoherent beam and amplifying an oscillation mode corresponding to a wavelength of the scanning beam. The bias control unit(220) controls the bias current of the Fabry-Perot laser to a value approaching a threshold current of the Fabry-Perot laser.
Abstract:
PURPOSE: A WDM(Wavelength Division Multiplexed) light source and a passive optical network system using a light source are provided to adopt a spectrum division method without a wavelength stabilizing circuit for stabilizing a light source having a specific oscillating wavelength, and to supply a WDM signal having a very narrow line width, thereby supplying a broadcasting service without signal distortion. CONSTITUTION: The first optical amplifier(30) operates by being pumped on a rear side with a pump laser(10), and generates a natural radiation amplifying noise. A multiplexer/demultiplexer(50) has one input/output end on one side and plural input/output ends on the other side, demultiplexes a signal to output the signal to the input/output ends of the other side, multiplexes signals, and outputs the multiplexed signals to the input/output end of the one side. Mirrors(55) re-input the demultiplexed signals outputted through the plural input/output ends to the plural input/output ends. A circulator(40) transmits a signal inputted from the amplifier(30) to the one input/output end, and outputs the multiplexed signal inputted from the one input/output end. The second optical amplifier(70) amplifies the multiplexed signal. An optical distributor(80) distributes the amplified signal, outputs a portion of the signal to the amplifier(30), and outputs a portion of the signal outside. An outer modulator(90) modulates the multiplexed signal, and outputs the modulated signal.