Abstract:
본 발명은 나트륨 이온을 삽입 및 탈리할 수 있는 리튬티타늄산화물 나트륨 전지용 음극 소재를 제공한다. 본 발명의 음극 소재를 사용한 나트륨 전지는 전극용량은 높고 사이클 수명은 증가되어 기존의 나트륨 전지의 단점을 보완하여 리튬 이차 전지를 대체할 것으로 기대된다.
Abstract:
본 발명은 리튬과의 전기화학적 반응에 의한 에너지 저장용량이 기존 흑연 소재에 비해 10배 이상 향상되고 출력특성이 우수한 금속계 나노구조 소재 및 이로 구성된 전극, 이러한 전극을 음극으로 포함하는 리튬이온비대칭이차전지에 관한 것이다. 본 발명의 리튬이온비대칭이차전지용 전극을 사용하면, 금속계 소재의 고용량 특성에 의해 매우 얇은 두께로도 흑연 소재 이상의 에너지를 저장할 수 있고 나노구조에 의해 고출력특성을 발현할 수 있으므로, 기존의 리튬이온커패시터에 비해 같은 무게에서 에너지 밀도를 획기적으로 향상시킬 수 있고, 이를 포함하는 리튬이온비대칭이차전지는 신재생에너지 저장, 유비쿼터스 전원, 중기계 및 자동차 전원 등에 이용 가능하다.
Abstract:
PURPOSE: An apparatus for collecting and separating sulfur hexafluoride and a method for the same are provided to improve the collecting rate of sulfur hexafluoride by removing moisture and sulfur dioxide from waste gas containing sulfur hexafluoride. CONSTITUTION: A gas pre-treatment unit(120) removes moisture and sulfur dioxide from waste gas containing sulfur hexafluoride. A first sulfur hexafluoride concentrating unit(210) selectively absorbs and desorbs sulfur hexafluoride from the waste gas. A first separation membrane module(130) separates the waste gas from the first sulfur hexafluoride concentrating unit into a first collected gas and a first other gas. A second separation membrane module(140) separates the first collected gas into a second collected gas and a second other gas. A different storing tank(150) stores the first other gas. A third separation membrane module separates the first other gas into sulfur hexafluoride and other gas. [Reference numerals] (120) Gas pre-treatment unit; (AA) Waste gas; (BB) First other gas; (CC) First collecting gas; (DD) Second other gas; (EE) Second collecting gas; (FF) Third other gas; (GG) First separation membrane module; (HH) Second separation membrane module; (II) Third separation membrane module
Abstract:
A noble thin film preparation method capable of satisfying adhesive strength and deposition rate at the same time, process conditions capable of optimally controlling surface resistance, corrosion resistance, electromagnetic wave shielding effect, etc. of a metal film formed on the surface of polymer, and a method for preparing a thin film excellent in mass production capability and applicability into various fields are provided. A method of forming a metal film on the polymer surface by cycle operation comprises: an ordinary temperature chemical vapor deposition step of forming high density plasma ions using electron cyclotron resonance, simultaneously supplying a metal precursor and applying a positive or negative DC voltage with low frequency to a lower portion of the plasma ions to form supercondensed metal ions, and depositing the supercondensed metal ions on the surface of a polymer matrix by chemical bonding; and a physical vapor deposition step of performing physical vapor deposition of a metal target on the surface of the polymer matrix by physical activation, wherein the physical vapor deposition step is periodically performed at different time intervals while the chemical vapor deposition is performed.
Abstract:
본 발명은 전기장 결합형 플라즈마 화학 증착법에 의한 도전성 금속 복합박막의 제조방법에 관한 것으로서, 더욱 상세하게는 상온에서 고분자 기질 표면에 전자 사이크로트론 공명 플라즈마에 의해 플라즈마 이온을 형성하고, 상기 형성된 플라즈마 이온 하단에서 유기금속화합물 전구체를 공급함과 동시에 저주파 직류 양·음전압을 인가하여 과응축된 금속이온을 형성하고, 상기 형성된 금속이온이 고분자 기질 표면에 화학 결합에 의해 증착되어 금속 복합막을 형성하는 일련의 단일 시스템을 적용하여, 접착성, 광투과율이 향상되어 플라스틱 태양전지, 액정 구동을 위한 필터 등의 여러 분야에 응용이 가능한 도전성 금속 복합박막을 제조하는 방법에 관한 것이다.
Abstract:
고주파플라즈마화학증착법과 열플라즈마화학증착법을 결합한 공정에 의해 금속기판 위에 별도의 촉매층 코팅과정을 거치지 않고 길이가 긴 탄소나노튜브를 생성시켜 이를 전극으로 사용한 전기이중층축전기의 전극 단위면적당 축전용량을 크게 하여 축전기 전체의 에너지밀도를 증가시킨다.
Abstract:
PURPOSE: A positive electrode active material for a lithium battery, its preparation method, a positive electrode containing the active material and a lithium battery containing the positive electrode are provided, to improve conductivity, high rate charge/discharge characteristics, high temperature characteristics and cycle lifetime characteristics. CONSTITUTION: The positive electrode active material comprises a conductive material, a metal oxide or their mixture formed on the surface of a positive electrode active material, in the shape of a thin film or cluster with a thickness of 1-300 nm. Preferably the conductive material is selected from the group consisting of acetylene black, carbon black, carbon nanotube and carbon nanofiber with a particle size of 1-300 nm, or the group consisting of Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Ag, Zr, Zn, Mo, Au, Ru, Pd, In, Pt, Ir and their alloys with a particle size of 1-300 nm; and the metal oxide is selected from the group consisting of Al2O3, MgO, CoO, NiO, Li2O, Li2CO3, TiO2, ZrO2, ZnO, Co3O4, BaTiO3, CuO, V2O5, V2O3, RuO2, SiO2, SnO2, Bi2O3, Sb2O3, Fe2O3, Fe3O4, Cr2O3, AgO, MoO3 and their mixtures with a particle size of 1-300 nm.
Abstract translation:目的:提供一种用于锂电池的正极活性物质及其制备方法,含有活性物质的正极和含有正极的锂电池,以提高导电性,高速率充放电特性,高温特性和循环 寿命特性。 构成:正极活性物质包含形成在正极活性物质的表面上的导体材料,金属氧化物或它们的混合物,厚度为1-300nm的薄膜或簇状。 优选导电材料选自乙炔黑,炭黑,碳纳米管和粒径为1-300nm的碳纳米纤维,或由Li,Al,Sn,Bi,Si,Sb,Ni ,Cu,Ti,V,Cr,Mn,Fe,Co,Ag,Zr,Zn,Mo,Au,Ru,Pd,In,Pt,Ir及其合金的粒径为1-300nm; 金属氧化物选自Al2O3,MgO,CoO,NiO,Li2O,Li2CO3,TiO2,ZrO2,ZnO,Co3O4,BaTiO3,CuO,V2O5,V2O3,RuO2,SiO2,SnO2,Bi2O3,Sb2O3,Fe2O3 ,Fe 3 O 4,Cr 2 O 3,AgO,MoO 3及其混合物,其粒度为1-300nm。
Abstract:
PURPOSE: A carbon nano tube, an electrochemical dual layer capacitor using the same, and a fabricating method thereof are provided to grow the carbon nano tube having long length by using a PECVD(Plasma Enhanced Chemical Vapor Deposition) method and a TACVD(Thermally Activated Chemical Vapor Deposition) method. CONSTITUTION: Particles are removed from a surface of a metal substrate(100) in order to improve the quality of the metal substrate(100). A hydrocarbon gas and RF current are provided into the inside of a chamber. A carbon nano tube(200) is grown on the metal substrate(100) by performing a PECVD process. The PECVD process is interrupted before the growing process of the carbon nano tube(200) is interrupted. The hydrocarbon gas is provided into the inside of the chamber. The carbon nano tube(200) is grown on the metal substrate(100) by performing a TACVD process.
Abstract:
PURPOSE: By adding a specific amount of an anionic surfactant or anionic surfactant/nonionic surfactant in aqueous solution of carbamide £(NH2)2CO| employed in selective non-catalytic reduction of nitric oxides, it is possible to spray carbamide solution finer than use aqueous solution of carbamide alone, especially accelerate chemical decomposition of carbamide over a relatively low temperature range of less than 900°C. CONSTITUTION: In the selective non-catalytic reducing agent for reducing nitric oxides(NOx) containing aqueous solution of carbamide £(NH2)2CO| as main Ingredient, the selective non-catalytic reducing agent is added with a sulfone-based anionic surfactant in an amount of 0.1 to 20wt.%, wherein the sulfone-based anionic surfactant is selected from sodium alpha olefin sulfonate 0.1-10 wt.% and linear alkylbenzene sulfonic acid 0.1-5 wt.%. Further, the selective non-catalytic reducing agent is added with coconut diethanol amide nonionic surfactant in an amount of 0.1-20 wt.%.
Abstract:
PURPOSE: An electron cyclotron resonance and sputter combined chemical vapor deposition system at ordinary temperature is provided which forms a composite metal film at ordinary temperature by combining electron cyclotron resonance with sputter, and a preparation method of the composite metal film using the same is provided. CONSTITUTION: The electron cyclotron resonance and sputter(55) combined chemical vapor deposition system at ordinary temperature comprises a reaction chamber(10) providing reaction environment for depositing metal ions and radical ions on the substrate; a substrate(15) which is installed in the reaction chamber, and on which a sample where metal ions and radical ions are deposited is mounted; an ECR (electron cyclotron resonance) system which is connected to the reaction chamber to plasma formed by an ECR (electron cyclotron resonance); an organic matter supply system for supplying organic materials into the reaction chamber; a sputtering system for supplying metal ions to the reaction chamber(10); an induction voltage supply system for guiding the metal ions and radical ions to the sample mounted on the substrate; a grid which is installed adjacently to the substrate(15), and to which a voltage supplied by the induction voltage supply system is impressed to guide the metal ions and radical ions to the sample; and a vacuum system which is connected to the reaction chamber to adjust internal degree of vacuum.