Abstract:
본 발명은 단일 파장의 광원으로 펌핑하여 희토류 원소에 의한 광신호 증폭과 비선형 라만효과에 의한 광신호 증폭을 동시에 발생시키면서 광 증폭대역이 서로 중첩되지 않도록 하는 광섬유 및 이를 이용한 하이브리드 광섬유 증폭기에 관한 것으로, 클래드와, 상기 클래드의 굴절율 보다 큰 굴절율을 갖도록 구성되는 코어로서 소정의 파장을 갖는 펌핑광을 입력 받아 희토류 원소에 의해 제1 밴드로 광증폭을 하도록 첨가되는 제 1 원소와 비선형 라만 광증폭에 의해 제2 밴드로 광증폭을 하도록 첨가되는 제 2 원소를 포함하는 코어를 포함하여 구성된 증폭용 광섬유를 제공한다. 광증폭기, 희토류, 라만, 어븀 게르마늄 동시 첨가 광섬유
Abstract:
직접광변조형 파장변환기를 개시한다. 본 발명에 따른 파장변환기는 연속발진 신호가 필요없는 이득고정형 반도체 광증폭기 또는 반도체 레이저 자체이면서, 이들과 광섬유간의 결합손실을 줄이고 레이저의 발진 문턱값을 높게 한 것이다. 본 발명에 따르면, 파장변환이 일어나는 입력신호광의 세기를 조절할 수 있어 상대적으로 약한 세기의 입력신호광에 대해서도 파장변환이 가능하다.
Abstract:
본 발명은 폴리머 광소자 제조방법에 관한 것으로, 반도체 기판 상에 폴리머 물질을 도포하여 하부 클래드층을 형성하는 단계와, 상기 하부 클래딩층 상에 폴리머 물질을 도포한 후, 패터닝하여 코어층을 형성하는 단계와, 상기 코어층이 형성된 결과물 상에 폴리머 물질을 도포하여 상부 클래드층을 형성하는 단계와, 상기 상부 클래드층 상에 상기 하부 클래드층이 분리되었을 때 온도에 따른 굴절률 변화를 온도에 따른 길이 변화로 상쇄하도록 적절한 열팽창 계수를 갖는 폴리머 물질을 도포하여 오버 레이어를 형성하는 단계 및 상기 반도체 기판과 소정 영역의 상기 하부 클래드층을 분리하는 단계를 포함한다. 본 발명에 의하면, 폴리머 광소자의 온도 의존성을 최소화할 수 있다.
Abstract:
본 발명은 Ho 3+ : 5 I 5 → 5 I 7 천이로부터 방출되는 1.6 ㎛ 형광을 광증폭기로 이용하면서 펌프효율을 향상시킬 수 있는 여기광원의 주 파장대역과 5 I 5 준위와 5 I 7 준위간 밀도반전을 이루어 증폭기의 이득특성을 향상시킬 수 있는 보조펌프 파장대역을 개진한다. 홀뮴이나 홀뮴과 터븀, 홀뮴과 유로퓸, 홀뮴과 네오디뮴 또는 홀뮴과 디스프로슘 등이 첨가된 광재료를 이용하는 광증폭기를 11,200~11,500 cm -1 범위의 빛을 방출하는 광원 또는 6,000~6,500 cm -1 범위의 빛을 방출하는 광원을 이용하여 펌핑할 수 있다.
Abstract:
PURPOSE: A polarization-insensitive polymer optical device and a fabricating method thereof are provided to reduce a double refraction ratio by forming an upper cladding layer with multi-layered sub-cladding layers and controlling the thickness and the number of the sub-cladding layers. CONSTITUTION: A polarization-insensitive polymer optical device includes a substrate, a lower cladding layer, one or more core layer patterns, and an upper cladding layer. The lower cladding layer(12) is formed on an upper surface of the substrate(10). The core layer patterns(14a) are formed on a predetermined region of the lower cladding layer. The upper cladding layer(18) is formed on the upper surface of the lower cladding layer on which the core layer patterns are formed. The upper cladding layer is formed with two-layered sub-upper cladding layers.
Abstract:
PURPOSE: A wavelength variation type semiconductor laser and a fabricating method thereof are provided to change continuously a wavelength within a broad wavelength band by applying the electric field or the current to electrodes. CONSTITUTION: A wavelength variation type semiconductor laser includes an optical waveguide, an active region, an electrode array, a Fabry-Perot filter, and a curve mirror. The optical waveguide is formed on a substrate in order to guide an optical signal by a cladding layer. The active region(14) is formed at a part of the optical waveguide in order to generate the optical signal. The electrode array(18) is formed at one side of the active region in order to change the traveling direction of the optical signal by applying the electric field and the current to a part of the optical waveguide. The Fabry-Perot filter(13) is used for filtering the optical signal of the selected wavelength. The curve mirror(17) is used for reflecting the optical signal.
Abstract:
The present invention utilizes an amplified spontaneous emission (ASE) as a pumping source, thereby enhancing an amplification capability of a two-stage L-band EDFA. The two-stage L-band EDFA of the present invention includes a first amplifier and a second amplifier. The first amplifier is designed as a reflective amplifier, thereby re-amplifying a forward ASE by means of a gain medium. The first amplifier has a pumping LD, a WDM coupler, a first EDF and a Faraday rotating mirror. The second amplifier plays a role in amplifying an optical signal by utilizing the re-amplified forward ASE and the backward ASE as the pumping light. Here, the forward ASE and the backward ASE are transmitted to the second amplifier through an optical circulator. The second amplifier has a second EDF and an optical isolator.
Abstract:
A high-speed wavelength channel selector has properties of relatively easy manufacturing and easy extension to multi-channel integration, and a high-speed space and wavelength multiplexed channel selector uses the high-speed wavelength channel selector. The high-speed wavelength channel selector is integrated with electro-optic waveguide switches of non-crystalline materials, such as electro-optic polymers or glasses, in the middle of a pair of wavelength multiplexer and demultiplexer and the high-speed space and wavelength multiplexed channel selector has the photonic integrated circuit-type composition of a space multiplexed channel selector containing M electro-optic waveguide switches and an Mx1 channel combiner, the high-speed wavelength channel selector, optical amplifier and a high-speed wavelength converter.
Abstract:
PURPOSE: A method of fabricating optical fiber is provided to overcome the difficulties of adjusting a radius ratio of a core to a cladding and to prevent an impurity of a core/cladding interface from being input. CONSTITUTION: A core glass bar is made by mixing glass raw through a melting-quenching manner and by shaping and slowly cooling the mixed material. The core glass bar is heated over a glass transient temperature and is afflicted with a tensile force so as to be extended in a length direction. Thus, there is made a core glass bar having a desired length. The core glass bar is fixed at the center of a mold(21) having a structure comprising upper and lower fixing holes(22,23), and the mold is filled up with melt solution. An optical fiber material is made by slowing cooling the mode filled up with the melt solution. After heating the optical fiber material over the glass transient temperature, the optical fiber is made through a well-known manner.
Abstract:
PURPOSE: A method for forming two conductive layers insulated therebetween on an optical fiber is provided to form an electrode for polling the optical fiber by forming conductive layers at the optical fiber of a single mode or a multiple mode. CONSTITUTION: A plurality of grooves(120,121) are formed on an upper surface of a substrate(110). A plurality of optical fibers(126,127) are adhered on the grooves(120,121) by using photoresist(130,131). A photoresist pattern(140) is formed on a surface of the optical fibers. A plurality of conductive layers(145,145a,145b) are formed on the resultant including the photoresist pattern. The photoresist pattern is removed. The optical fibers are separated from the grooves. The conductive layer is removed from the photoresist pattern. The conductive layers are formed on an opposite side to the conductive layer.