Abstract:
1. 청구범위에 기재된 발명이 속한 기술분야 본 발명은 특이 결합부위 자동추출을 이용한 리간드 검색 장치 및 그 방법에 관한 것임. 2. 발명이 해결하려고 하는 기술적 과제 본 발명은 단백질 결합부위들 간의 서열과 함께 구조를 탐색하거나 단백질 결합부위들 간의 구조를 탐색한 후에 자동으로 특이결합부위를 추출하여 리간드를 검색함으로써, 선택성이 높은 약을 설계할 수 있고, 단백질 구조 기반 신약 설계 과정을 좀더 편리하고 신속하게 수행할 수 있도록 하기 위한, 특이 결합부위 자동추출을 이용한 리간드 검색 장치 및 그 방법을 제공하는데 그 목적이 있음. 3. 발명의 해결방법의 요지 본 발명은, 리간드 검색 장치에 있어서, 입력 데이터를 처리하기 위한 입력 데이터 처리부; 상기 입력 데이터 처리부로부터의 데이터에서 결합부위를 추출하기 위한 결합부위 추출부; 비교 방식을 사용자가 선택할 수 있도록 지원하기 위한 사용자 선택 입력부; 상기 사용자 선택 입력부의 선택 정보에 따라 목표 단백질의 결합부위와 데이터베이스의 단백질의 유사결합부위를 비교하여 추출하기 위한 유사결합부위 비교부; 및 상기 유사결합부위 비교부로부터의 특이결합부위에 대하여 가상 스크리닝을 수행하여 리간드를 검색하기 위한 리간드 검색부를 포함함. 4. 발명의 중요한 용도 본 발명은 구조 기반 신약 설계(Structure based drug design) 등에 이용됨. 리간드 검색, 특이 결합부위 자동추출, 유사결합부위 구조탐색
Abstract:
1. 청구범위에 기재된 발명이 속한 기술분야 본 발명은 3차원 상대적 방향각과 푸리에 디스크립터를 이용한 단백질 구조 비교 장치 및 그 방법에 관한 것임. 2. 발명이 해결하려고 하는 기술적 과제 본 발명은 3차원 상대적 방향각(3D RDA)과 푸리에 디스크립터(Fourier Descriptor)를 이용하여 단백질 구조의 특징을 기술하여 3차원 단백질 데이터베이스에서 질의 단백질과 유사한 단백질을 실시간으로 검색하기 위한 단백질 구조 비교 장치 및 그 방법을 제공하는데 그 목적이 있음. 3. 발명의 해결방법의 요지 본 발명은, 단백질 구조 비교 장치에 있어서, 외부로부터 입력되는 검색 대상 단백질 데이터 또는 질의 단백질 데이터에 대하여 3차원 상대적 방향각을 코딩하기 위한 3차원 상대적 방향각 코딩 수단; 상기 3차원 상대적 방향각 코딩 수단에서 코딩한 3차원 상대적 방향각 코딩값을 푸리에 변환하여 푸리에 계수를 구하기 위한 푸리에 변환 수단; 상기 푸리에 변환 수단에서 구한 검색 대상 단백질 데이터에 대한 푸리에 계수와 질의 단백질 데이터에 대한 푸리에 계수를 비교하기 위한 비교 수단; 및 상기 비교 수단의 비교 결과에 따라 유사한 순서대로 단백질 데이터를 출력하기 위한 출력 수단을 포함함. 4. 발명의 중요한 용도 본 발명은 유사 단백질 검색 시스템 등에 이용됨. 단백질 구조 비교, 3차원 상대적 방향각, 푸리에 디스크립터, 푸리에 변환, 푸리에 계수, 유사 단백질 실시간 검색
Abstract:
An apparatus for detecting transcriptional regulation between genes is provided to improve accuracy of detection by using transcriptional factors which is biologically present between genes, form a network of biological information by predicting the transcriptional regulation between genes, and obtain various transcriptional regulations between genes through the network or map. An apparatus for detecting transcriptional regulation between genes comprises: a storage unit for storing regulator gene, at least one transcriptional factor corresponding to the regulator gene, and a profile(sequence information) of the transcriptional factor; an input unit(13) for inputting the information of a first gene and a second gene; search units(14,15) for searching the profile of the first gene information inputted in the storage unit; and a transcriptional regulation-detecting unit(16) for detecting transcriptional regulation of the first gene and second gene by performing the local sequence alignment by using the searched transcriptional factor profile and the nucleic acid sequence of the second gene.
Abstract:
A method and an apparatus of protein name normalization using ontology mapping are provided to recognize accurately the protein written on the literatures by mapping the protein name recognized in the biological literatures into a normalized protein ontology. A literature recognition part(110) extracts a protein name and species data by accepting biological literatures input. An abbreviated word dictionary DB(130) is composed of pairs of an abbreviated protein names and an original protein names. An abbreviated protein name restoration part(120) restores the abbreviated protein name into the original protein name. A synonym dictionary DB(150) is constructed through the ontology. An inverted index structure DB(160) of the synonym dictionary has an inverted index structure of the synonym dictionary. A protein code analysis part(140) analyzes the protein code by calculating similarity of the protein code by comparing the extracted protein name and the inverted index structure DB of the synonym dictionary. An ontology ID allocating part(190) allocates final ontology IDs by protein name based on the protein code and kind.
Abstract:
A device and a method for predicting feature of unknown protein are provided to predict the feature of the unknown protein in a PPI(Protein-Protein Interaction) network by utilizing a feature relation matrix using level normalization of GO(Gene Ontology) terms and PPI data. A GO term normalizer(21) normalizes a GO term level by calculating similarity of the GO terms found in an external PPI network(14). A feature relation matrix generator(22) generates the feature relation matrix by using the data received from the PPI network and the GO term normalizer. A Chi-square value calculator(23) calculates a Chi-square value by using the data received from the PPI network and the GO terminal level normalizer. A protein feature predictor(24) predicts the feature of the unknown protein by using the Chi-square value and the feature relation matrix.
Abstract:
A method and a system for verifying protein-protein interaction with text mining are provided to avoid a duplicated experiment by utilizing knowledge proved through documents before the estimated protein-protein interaction is experimentally proved and generate a measure for estimating performance of an estimation system by verifying a result of the estimation system. An ontology database(160) stores protein-protein interaction and hierarchical structure information among proteins. A text mining part(120) extracts the protein-protein interaction from protein-related documents by using a text mining method. An ontology mapper(130) maps the extracted protein-protein interaction to an ontology ID by using the ontology database. An information filter(140) filters the information having high weight based on a frequency of the information and an effect factor of the protein-related documents among the mapped protein-protein interaction information. An information indexer indexes protein-related document/sentence, ontology ID, protein-protein interaction, and precision information.
Abstract:
PURPOSE: A method for automatically generating a template for constructing a protein interaction network is provided to reduce a network construction expense by automatically generating the basic template for the interaction network of an object protein based on the interaction network of the proteins, which are present in other species, similar to the object protein. CONSTITUTION: The proteins of a function similar to the object protein are searched from many species(S202). The interaction network of the searched proteins is generated based on a previously defined interaction relation database(S204). A similarity relation between the proteins existing in the generated interaction networks is set(S206). The network template of the object protein is generated by integrating the protein nodes between the different networks setting the similarity relation(S207).
Abstract:
PURPOSE: A nonlinear quantization and similarity matching method for retrieving a video sequence having plural image frames is provided to configure a bit expression of an edge histogram descriptor having reduced bits for a video sequence including plural image sets, and to retrieve the video sequence with extracted information from the coded expression, thereby reducing the number of bits. CONSTITUTION: A system selects one image frame of a video sequence as a target image frame(S110), and divides the selected frame into sub images(S111). The system extracts edge histograms from the sub images(S112), and decides whether the edge histograms are generated for all the sub images(S113). If so, the system increases a constant by 1 to select a next image frame of the video sequence(S115). The system decides whether all image frames are selected from the video sequence(S116). If so, the system generates a representative edge histogram bin as the first image descriptor(S117), and creates a quantization index value group(S118).
Abstract:
PURPOSE: A method for automatically generating a template for constructing a protein interaction network is provided to reduce a network construction expense by automatically generating the basic template for the interaction network of an object protein based on the interaction network of the proteins, which are present in other species, similar to the object protein. CONSTITUTION: The proteins of a function similar to the object protein are searched from many species(S202). The interaction network of the searched proteins is generated based on a previously defined interaction relation database(S204). A similarity relation between the proteins existing in the generated interaction networks is set(S206). The network template of the object protein is generated by integrating the protein nodes between the different networks setting the similarity relation(S207).
Abstract:
PURPOSE: A non-linear quantization and similarity matching methods for retrieving image data is provided to construct a database to store image information representing a plurality of images with fewer bits, and to retrieve corresponding images in response to a query image based on a database with a high retrieval speed and accuracy. CONSTITUTION: L.times.5 number of normalized edge histogram bins are calculated to generate L number of edge histograms of a target image, wherein L is a positive integer and each edge histogram has five normalized edge histogram bins and represents a spatial distribution of five reference edges in a sub-image, wherein the reference edges include four directional edges and a non-directional edge(S101). The L.times.5 number of normalized edge histogram bins are non-linearly quantized to generate L.times.5 number of quantization index values for the target image(S103). The L.times.5 number of quantization index values are stored in the database(S105). And the steps S101 to S105 are repeated until all of the stored images are processed to construct the database having the image information(S107).