Abstract:
The invention provides a method and a wind turbine (3) comprising a crane (401), wherein the wind turbine (3) further comprises an on-site control module (411), which is connectable to a remote control unit (421) located outside of the wind turbine (3), for receiving control data from the remote control unit (421), the control module (411) further being arranged to control the crane (401) in dependence on the control data.
Abstract:
A method of operating a wind turbine during a service, wherein the wind turbine comprises at least one rotor-nacelle assembly, the or each rotor-nacelle assembly comprising a rotor; the method comprising: detecting that a service is to be or is being carried out on the wind turbine; and, on detecting that a service is to be or is being carried out on the wind turbine, reducing an operating level of the or each rotor-nacelle assembly.
Abstract:
A wind park with wind turbines and airborne wind energy systems where a first zone and a second zone is defined for at least one of the airborne wind energy systems such that the risk of collision between a part of that airborne wind energy systems and a part of one of the wind turbines is higher when the airborne unit of that airborne wind energy system is in the second zone than when it is in the first zone, and different control parameters are applied to the control of at least one of the wind turbine and the airborne wind energy system depending on the position of the airborne unit relative to the defined zones.
Abstract:
A wind installation comprising a wind turbine (1) and an airborne wind energy system (12, 13) is disclosed. The wind turbine (1) comprises a tower (2) placed on a foundation on a wind turbine site and at least one nacelle (3) mounted on the tower (2) via a yaw bearing. A rotor (4) is coupled to each nacelle (3) generating electrical energy for a power grid. The wind turbine (1) further comprises an airborne wind energy system (12, 13) comprising a separate generator for generating electrical energy, the airborne wind energy system (12, 13) being coupled to the wind turbine (1) via a cable (6) and the yaw bearing.
Abstract:
A wind installation comprising a wind turbine (1) and an airborne wind energy system (12, 13), e.g. in the form of a kite (12) or a glider (13) is disclosed. The wind turbine (1) is electrically connected to the power grid via a power transmission line (27). The wind installation further comprises an airborne wind energy system (12, 13), e.g. in the form of a kite (12) or a glider (13), for generating electrical energy. The airborne wind energy system (12, 13) comprising a separate generator is coupled to the wind turbine (1) via a cable (6) and the separate generator is electrically connected to the power transmission line (27).
Abstract:
A wind power plant includes a plurality of wind turbine systems arranged in rows and columns and includes a cable support system with at least one cable. The cable is coupled to the support structure above the first wind turbine and below the second wind turbine. The cable couples directly adjacent wind turbine system together. The cable may extend the entire length of at least one row or at least one column. A wind turbine system includes a plurality of wind turbines and a support structure including a tower and support arms. The cable support system that is coupled to the wind turbine system and that is configured to transfer loads on the wind turbine system to other wind turbine systems in the wind power plant.
Abstract:
The invention is directed to a wind turbine system comprising a first pair of wind turbines mounted to a support structure by a first support arm arrangement, and a second pair of wind turbines mounted to the support structure by a second support arm arrangement. The first and second support arm arrangements are mounted to the support structure at a respective yaw unit so as to yaw about the major axis of the support structure. Moreover, the wind turbine system further includes a control system that is configured to control the yaw angle of each of the first and second support arm arrangements, wherein the control system is configured to identify the presence of a predetermined shutdown condition and, in response, the control system is operable to control the yaw angles of the first support arm arrangement and the second support arm arrangement to a predetermined safe state.
Abstract:
A wind turbine nacelle configured for mounting on a wind turbine tower and for supporting a rotor assembly, the nacelle comprising at least a first and a second nacelle module. The first nacelle module comprises a first frame structure and a main bearing system for a main shaft of the rotor assembly, and the second nacelle module comprises a second frame structure and a drive train system for the wind turbine. When the nacelle is mounted on the wind turbine tower, the main bearing system is supported by the wind turbine tower, and the drive train system is attached to the main bearing such that the weight of the drive train system is transferred to the main bearing system and thereby to the wind turbine tower. Further, the first frame structure is configured to support the main bearing system during transportation and prior to mounting of the nacelle, and the second frame structure is configured to support the drive train system during transportation and prior to mounting of the nacelle, and the first and second frame structures form a load carrying structure of a first and a second shipping freight container such that the first and second nacelle module can be transported as shipping freight containers. When the nacelle is mounted on the wind turbine tower, the first and second frame structures may be placed side by side in a direction along a rotational axis of the wind turbine rotor and may be oriented such as to have a length extending transversely to a rotational axis of the wind turbine rotor.