Abstract:
Radiant energy is transmitted to a probe element including an interior conical reflecting surface and a fluid sample chamber. Portions of the light which have been transmitted, partially attenuated, or scattered by a fluid sample in the sample chamber are directed by at least a portion of the interior conical reflecting surface to means for collecting the transmitted, partially attenuated, or scattered light. A stilling valve incorporated into the probe element enables elimination of entrained gas bubbles from the chamber. A specific application of the probe is disclosed in which a titration analyzer is combined with electro-optic signal conversion and processing circuits and a probe according to the invention to provide titration colorimetric endpoint determination in measuring the free fatty acid content of a fluid such as a edible oil or fat.
Abstract:
A versatile optical analysis system comprising a spectrophotometer having a collimated radiation source, an output port for the radiation, an input port for external radiation, a detector, and means for processing electrical signals representative of radiation from a sample to be analyzed. The system also comprises one or more remote terminals where the sample is located, and novel radiation piping means for selectively piping radiation from the spectrophotometer to the remote terminal or vice versa. Novel remote terminals are also described for carrying out diffuse reflection, external reflection, or emission analysis.
Abstract:
An apparatus and method continuously samples and measures the changing concentration and/or density of suspended solids in a liquid medium without electrical connections at the submerged points in the liquid. A submersible sensing head is connected by an elongate probe to an non-submersible enclosure which contains at least one light source and one light detector. The sensing head has an apertured sample chamber allowing liquid to flow freely therethrough when submerged and contains at least one light emitting lens and at least one light receiving lens aligned in the flow path. The light emitting lens is connected to the light source and the light receiving lens is connected to the light detector with fiber optic bundles extending the probe. An elongate shaft extends through the probe and into the sensing head sample chamber and has a lens wiper at its lower end. The shaft is reciprocated by a timed motor in the enclosure to move the lens wiper between the lenses to wipe them clean of debris at selective continuous or intermittent cycles. When the sensing head is submerged light is transmitted from the light source to the emitting lens through the liquid between the lenses to the receiving lens and to the light detector for determining the concentration and/or density of suspended solids in the sample liquid with no submerged electrical connections.
Abstract:
A probe, for use with a spectrophotometer, which senses the reflectance of a sample remote from the spectrophotometer. The probe includes a housing having a probe portion positionable proximate the sample, and an integrating chamber disposed within the probe housing and having a radiation input port, a sample port for passing diffused radiation to the sample and returning reflected radiation from the sample, a reference port, and an exit port to receive radiation reflected from the sample through the sample port. The probe further includes a guide for directing radiation to the radiation input port from a radiation source, and an element, responsive to the exit port and the reference port, for selectively conveying reflected radiation from the sample and the wall of the integrating chamber in the probe to the remote spectrophotometer.
Abstract:
A holding is presented. The holding device includes a male connector comprising a first male extension and a second male extension that extend out of opposite surfaces of a male central disk, an electromagnetic guiding device continuously passing through a central hole that continuously passes through the first male extension, the male central disk and the second male extension, a reflector that is in a direct physical contact with a first end of the electromagnetic guiding device that ends at a top surface of the first male extension, and a holder that covers the first male extension to hold the reflector, and maintain the physical contact between the first end of the electromagnetic guiding device and the reflector.
Abstract:
A holding is presented. The holding device includes a male connector comprising a first male extension and a second male extension that extend out of opposite surfaces of a male central disk, an electromagnetic guiding device continuously passing through a central hole that continuously passes through the first male extension, the male central disk and the second male extension, a reflector that is in a direct physical contact with a first end of the electromagnetic guiding device that ends at a top surface of the first male extension, and a holder that covers the first male extension to hold the reflector, and maintain the physical contact between the first end of the electromagnetic guiding device and the reflector.
Abstract:
An apparatus and methods for measuring combustion parameters in the measurement zone of a gas turbine engine. The measurement zone is defined as being between an outer casing and an engine component having a reflecting surface inside the outer casing. The apparatus comprises a laser generating a transmitting beam of light of a select wavelength and a multimode transmitting fiber optically coupled to the laser. A transmitting optic is optically coupled to the multimode optical fiber for transmitting the beam into the measurement zone. The reflecting surface is configured to provide a Lambertian reflection. A receiving optic is positioned to receive the Lambertian reflection. Means are provided in operative association with the multimode transmitting fiber for averaging modal noise induced signal level variation of light propagating within the multimode transmitting fiber.
Abstract:
The present invention is directed to solving the problems associated with the detection of surface defects on metal bars as well as the problems associated with applying metal flat inspection systems to metal bars for non-destructive surface defects detection. A specially designed imaging system, which is comprised of a computing unit, line lights and high data rate line scan cameras, is developed for the aforementioned purpose. The target application is the metal bars (1) that have a circumference/cross-section-area ratio equal to or smaller than 4.25 when the cross section area is unity for the given shape, (2) whose cross-sections are round, oval, or in the shape of a polygon, and (3) are manufactured by mechanically cross-section reduction processes. The said metal can be steel, stainless steel, aluminum, copper, bronze, titanium, nickel, and so forth, and/or their alloys. The said metal bars can be at the temperature when they are being manufactured. A removable cassette includes various mirrors. A protection tube isolates the moving metal bar from the line light assembly and image acquisition camera. assembly and image acquisition camera. A contaminant reduction mechanism applies a vacuum to remove airborne contaminants.
Abstract:
A spectroscopic system for the analysis of small and very small quantities of substances makes use for the purposes of energy transfer of cone-shaped aperture changers (14, 15) which are arranged in the object zone (8) between the light source (L) and the sample (9) and, during absorption measurements, also between the sample (9) and the inlet slot (3) of a spectrometer (1). If the form used is a double cone, the aperture changers (14, 15) facilitate an oblique coupling in a capillary tube accepting the sample (9) which acts as a step-waveguide for the coupled radiation.