Abstract:
One or more electron beam tubes are arranged to direct electron beams in air or other ambient gas toward a target object. The electron beams ionize air producing a plasma or glow discharge. An electric or magnetic field in the beam trajectory sustains the plasma by trapping secondary electrons formed by collisions of beam electrons with the ambient atmosphere. Target objects may be placed in the field for surface treatment, such as sterilization, or for thin film growth. In the latter case, the apparatus is enclosed in a housing and a reactive gas is introduced into the beam trajectory. The gas is one which is crackable by the electron beam or plasma, such as an organic silicon compound which would liberate silicon for combination with ionized oxygen to form silicon dioxide layers on a substrate.
Abstract:
The invention is a transportable and reconfigurable system and method designed for on-site conversion of toxic substances to nontoxic forms. The invention includes an electron beam generator, a reaction chamber and effluent post-processing modules mounted on a carrier for transporting the system from site to site.
Abstract:
An electron beam source or generator is described for the treatment of toxic materials in a treatment system in which electron beams are reacted with a flowing influent in a reaction chamber. The system is modular allowing different configurations as demanded by the site and by the clean-up job. It is also portable in that it can be easily moved from place to place. If mounted on a movable base it can be taken from place to place for use.
Abstract:
A flexible ion generator device that includes a dielectric layer having a first end, a second end, a first side, a second side, a top side, and a bottom side, at least one trace positioned on the dielectric layer and having a plurality of emitters engaged to the at least one trace. A plurality of lights disposed on the dielectric layer.
Abstract:
The present disclosure provides a drawer-type carrying device for an accelerator and an cabin structure for the accelerator, the drawer-type carrying device for the accelerator includes a frame mechanism and a drawing mechanism. The frame mechanism is used for installing the accelerator; the drawing mechanism is connected with the frame mechanism and the frame mechanism is movable relative to the drawing mechanism. The cabin structure for the accelerator includes a cabin, a shielding mechanism and a drawer-type carrying device for the accelerator. The cabin has a working area and a maintenance area. The shielding mechanism is disposed in the working area and has a side opening door facing towards the maintenance area. The frame mechanism is capable of drawn from the shielding mechanism into the maintenance area when the side opening door is opened.
Abstract:
Electron beam generator comprising an electron emitting device adapted to emit an electron beam when heated to an elevated temperature, wherein the electron emitting device comprises a filament having a spiral portion.
Abstract:
An electron beam device has a body provided with an exit window, said body is forming or is at least partly forming a vacuum chamber, the vacuum chamber comprising therein a cathode housing and at least one electron generating filament. At least one getter sheet is provided between the cathode housing and the filament. The invention is further comprising a getter sheet for use in an electron beam device and a method of manufacturing an electron beam device comprising at least one getter sheet.
Abstract:
A system and method for producing a continuous or pulsed source of high energy electrons at or near atmospheric pressure is disclosed. High energy electrons are used to ionize analyte molecules in ambient air through collisions with reactant ions. The device includes an electron emitter, electron optics, and a thin membrane in an evacuated tube. The electron emitter may include a photocathode surface mounted on an optically transparent window and an external source of UV photons. The transparent window may include a UV transparent window mounted on an evacuated tube and/or the evacuated tube may be a transparent tube on which a photocathode surface film is deposited. The electron optics may include successive electrodes biased at increasing voltages. The membrane may include a material transparent or semi-transparent to energetic electrons. Upon impacting the membrane, continuous or pulsed electron packets are partially transmitted through to a high pressure ionization region.
Abstract:
In an Ebeam system, the cathode assembly and/or the window assembly can be simply and quickly replaced or exchanged as required by conditions of use, without replacing the vacuum chamber, or other component systems. In some cases, replacement may be made without removing the vacuum chamber from its installed position. As a result, the cathode assembly and the window assembly can be readily changed over for maintenance. In addition, modular replacement cathode assemblies and window assemblies having varying characteristics may be selected to match a specific desired application, and then installed into the system. The system may be designed as a compact and lightweight portable device.