Abstract:
A tunable resonant circuit (102) includes first capacitors (104, 108, 216, 228, 232) and second capacitors (106, 1 10, 218, 230, 234) that provide a matched capacitance between first and second electrodes of the first and second capacitors. A deep-well arrangement includes a first well (320, 326) disposed within a second well (322, 328) in a substrate (324). The first and second capacitors are each disposed on the first well. Two channel electrodes of a first transistor (120, 130) are respectively coupled to the second electrode (1 14, 304) of the first capacitor and the second electrode (1 18, 308) of the second capacitor. Two channel electrodes of a second transistor (122, 132) are respectively coupled to the second electrode of the first capacitor and to ground. Two channel electrodes of the third transistor (124, 134) are respectively coupled to the second electrode of the second capacitor and to ground. The gate electrodes (226, 314) of the first, second, and third transistors are responsive to a tuning signal (126, 136), and an inductor (144, 202) is coupled between the first electrodes (1 12, 1 16, 302, 306) of the first and second capacitors.
Abstract:
An oscillator (100, 200) and a method of adjusting the frequency of oscillation of the oscillator (100, 200) are disclosed for generating a signal with an adjustable frequency in a frequency range from 1GHz to 200GHz. The oscillator (100, 200) includes a loop circuit. The loop circuit has an amplifier (101), a delay element or filter (103), a phase shifter (102), a device for adjusting the phase shifter (102), and a coupler (104) to provide an output signal. The adjusting device is coupled to the phase shifter (102).
Abstract:
In a tunable oscillator arrangement, a frequency-determining element, e.g. a capacitor, which is part of a tank circuit associated with an active oscillator stage, is connected between an input and output of a gain-controlled amplifier, the inductor of the tank circuit being connected across the inputs of the amplifier. Advantage is taken of the Miller effect to bring about changes in effective capacitance appearing across the inputs of the amplifier in response to changes in a DC gain-control signal applied to the amplifier, these changes in capacitance in turn varying the resonant frequency of the tank circuit.
Abstract:
A voltage system and a method of operating a voltage system are provided. The voltage system includes an oscillator and a pump device. The oscillator is configured to provide an oscillation signal exhibiting a first frequency when a voltage level of a supply voltage is greater than a reference voltage level, and to provide the oscillation signal exhibiting a second frequency greater than the first frequency when the voltage level of the supply voltage is less than the reference voltage level. The pump device is configured to provide the supply voltage, based on a frequency of the oscillation signal provided by the oscillator, by performing a charging operation.
Abstract:
An oscillator includes a tunable oscillator, a phase detector circuit communicatively coupled with an output of the tunable oscillator and an input to the oscillator, and an oscillator controller circuit configured to adjust frequency of the tunable oscillator based upon phase detection between output of the tunable oscillator and output of an external resonant element received at the input to the oscillator.