Abstract:
The present invention provides a charged particle beam apparatus capable of preventing the charging-up of the specimen without using a large-scale facility. A scanning electron microscope 100 illuminates a specimen 21 with a charged particle beam via a charged particle optical system arranged in a column. According to the present invention, the scanning electron microscope 100 has a charge preventive member 110 disposed between the objective lens 14 and the specimen 21. The charge preventive member 110 has an electrically conductive portion and an opening 113 to transmit the charged particle beam. The charge preventive member 110 is formed so as to partly cover the charged particle optical system when viewed from the charged particle beam irradiation spot on the specimen. In addition, the charge preventive member 110 has gas inflow paths 114 and 115 formed therein. These gas inflow paths have gas injection outlets 116 formed to inject gas toward the charged particle beam irradiation spot on the specimen.
Abstract:
An electro-optical scanning device reads indicia having parts of different light reflectivity, including bar codes and matrix arrays such as UPSCODES. The scanning device includes laser or light emitting diodes for emitting at least two light beams of the same or different wavelengths. The light beams may be visible to the human eye, and the beams are optically directed to form one or two scan lines to scan portions of a symbol. Dual photosensor(s) or a charge coupled device detects light reflected from the different portions of the symbol. The charge coupled device can be used to detect either reflected ambient light or the reflected visible light from the beams emitted by the diodes. The photosensors generate signals corresponding to the detected light which can be processed simultaneously. The device is particularly useful in reading two dimensional or more complex symbols. Methods for reading indicia are also described.
Abstract:
An optical system for generating multiple linear images of an illuminated object line and focusing the image onto an image plane. The multiple images are generated on the object side of the lens using optical beam-splitting techniques. In a preferred embodiment, the images are converted into electrical signals after focusing onto photosensor arrays.
Abstract:
Apparatus for use in a radiation scanning system comprising a radiation detector and an optical system arranged to scan radiation from a field of view across the radiation detector. The optical system includes two sets of planar reflective surfaces, one set being movable relative to the other, and a rotary assembly carrying one of the sets and rotatable about an axis of rotation. The detector is arranged relative to the optical system such that the radiation enters the detector after sequential reflection from reflective surfaces of the two sets, and the surfaces which effect the sequential reflection being separated by a predetermined amount and being located with respect to the axis of rotation such that the angle of incidence of radiation at the detector is independent of the position of the radiation in the field of view.
Abstract:
1. A GLASS FOR LASER USE COMPRISING THE FOLLOWING COMPONENTS, IN PRESENT BY WEIGHT-40-90% OF METAPHOSPHATES SELECTED FROM THE GROUP CONSISTING OF LI, NA, K, ZN, CD, BA, PB, MG, CA, AND SR, 5-50% OF PHOSPHATES OF ELEMENTS SELECTED FROM THE GROUP CONSISTING OF AL, ZR, B, AND CE, 1-7% OF TRIVALENT NEODYMIUM ND3+, AND 0.3-5% OF TRIVALENT YTTERBIUM UB3+, SAID GLASS HAVING A THERMAL EXPANSION COEFFICIENT IN THE RANGE OF 50-160X10**-7 1/DEGREE, A MICROHARDNESS IN THE RANGE OF 300-450 KG./MM,2,A QUANTUM EFFICIENCY OF TRANSMISSION OF ND3+>YB3+HIGHER THAN 0.7, THE SECTION OF STIMULATED EMISSION OF YTTERBIUM AT X=1060 NM. BEING EQUAL TO ABOUT 2.5-5X10**-21 CM.2, AND A MAXIMUM INVERSION AT ELECTRIC ENERGY OF PUMPING OF 80 JOULES/CM.3 IS 1.5 TO 2X10**19 1/CM.2.
Abstract:
Apparatuses and systems for a die-integrated aspheric mirror are described herein. One apparatus includes an ion trap die including a number of ion locations and an aspheric mirror integrated with the ion trap die.
Abstract:
Apparatuses and systems for a die-integrated aspheric mirror are described herein. One apparatus includes an ion trap die including a number of ion locations and an aspheric mirror integrated with the ion trap die.
Abstract:
A system, method, and computer readable medium for increasing an upstream optical coding gain in a passive optical network (PON). In an exemplary embodiment of the invention, the system may include a memory structured to store Optical Network Terminator (ONT) burst timing values, and provide a previous burst timing value of the burst timing values to a translator. Further, an upstream burst grant timing scheduler may provide a scheduled timing value to the translator, wherein the translator may be structured to translate the previous burst timing value to a new expected timing value per an ONT upstream burst in association with the scheduled timing value. Also, a delimiter match and search block may be structured to use the new expected timing value to check a bit stream for a delimiter pattern match. An alarm counter may be provided in the system that is structured to provide an alarm when the delimiter pattern match is not found.
Abstract:
To aim to provide a lighting apparatus that is compact yet easy in lamp replacement. A lighting apparatus 1 comprises: a lamp 6 including an outer tube 13 and an arc tube 15 provided inside the outer tube 13; and an opening-type lighting fixture 3 having a mirror part 11 having a concave reflective surface 9 inside which the lamp 6 is disposed. The mirror part 11 reflects light emitted from the lamp 6 at the reflection surface 9 such that the reflected light is emitted through an opening 10 of the mirror part 11. Relational expressions 22≦r≦28, R≦130, and 3.5≦R/r are satisfied, with r denoting a maximum outer diameter [mm] of the outer tube 13, and R denoting an opening diameter [mm] of the mirror part 11.