Abstract:
A calibration unit, system, and method for calibrating a device under test are provided. The calibration unit, system, and method use a single axis rotational unit to calibrate devices under test on a test head. The single axis rotation unit is configured to extend at an angle from a known axis. The test head can be designed in the shape of a frustum with multiple sides. The calibration unit, system, and method can use combinations of gravitational excitation, Helmholtz coil excitation, and rotational rate excitation for calibrating the device under test. The calibration unit, system, and method can calibrate a 3 degree for freedom or higher MEMS devices.
Abstract:
Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as nulllatent maskingnull, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as nullsimultaneous multi-level etching (SMILE)null, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as nulldelayed LOCOSnull, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes. The fourth aspect provides a process sequence that incorporates all three fundamental aspects to fabricate an integrated liquid chromatography (LC)/electrrospray ionization (ESI) device. The fifth aspect provides a process sequence that incorporates two of the fundamental aspects to fabricate an ESI device. The sixth aspect provides a process sequence that incorporates two of the fundamental aspects to fabricate an LC device. The process improvements described provide increased manufacturing yield and design latitude in comparison to previously disclosed methods of fabrication.
Abstract:
Three fundamental and three derived aspects of the present invention are disclosed. The three fundamental aspects each disclose a process sequence that may be integrated in a full process. The first aspect, designated as nulllatent maskingnull, defines a mask in a persistent material like silicon oxide that is held abeyant after definition while intervening processing operations are performed. The latent oxide pattern is then used to mask an etch. The second aspect, designated as nullsimultaneous multi-level etching (SMILE)null, provides a process sequence wherein a first pattern may be given an advanced start relative to a second pattern in etching into an underlying material, such that the first pattern may be etched deeper, shallower, or to the same depth as the second pattern. The third aspect, designated as nulldelayed LOCOSnull, provides a means of defining a contact hole pattern at one stage of a process, then using the defined pattern at a later stage to open the contact holes. The fourth aspect provides a process sequence that incorporates all three fundamental aspects to fabricate an integrated liquid chromatography (LC)/electrospray ionization (ESI) device. The fifth aspect provides a process sequence that incorporates two of the fundamental aspects to fabricate an ESI device. The sixth aspect provides a process sequence that incorporates two of the fundamental aspects to fabricate an LC device. The process improvements described provide increased manufacturing yield and design latitude in comparison to previously disclosed methods of fabrication.
Abstract:
A sensor apparatus includes a resonator, a transducer, a damping resistor, a first switch, a filter stage, a second switch, and a noise rejection stage. The transducer is configured to detect a position of the resonator. The damping resistor is configured to electrostatically actuate the transducer and convert a thermomechanical noise of the resonator to an electromechanical noise. The first switch is configured to receive a first signal from the transducer. The filter stage is configured to receive the first signal and adjust a phase and a gain of the first signal and output a filtered first signal. The second switch is configured to receive a second signal from the transducer. The noise rejection stage is configured to receive the filtered first signal and the second signal and reduce the filtered first signal from an output signal.
Abstract:
Accelerometers are described herein that have RMS outputs. For instance, an example accelerometer may include a MEMS device and an ASIC. The MEMS device includes a structure having an attribute that changes in response to acceleration of an object. The ASIC determines acceleration of the object based at least in part on changes in the attribute. The ASIC includes analog circuitry, an ADC, and firmware. The analog circuitry measures the changes in the attribute and generates analog signals that represent the changes. The ADC converts the analog signals to digital signals. The firmware includes RMS firmware. The RMS firmware performs an RMS calculation on a representation of the digital signals to provide an RMS value that represents an amount of the acceleration of the object.
Abstract:
A micro-electromechanical system (MEMS) device comprises a fixed portion and a proofmass suspended by at least one composite beam. The composite beam is cantilevered relative to the fixed portion and extends between a first end that is integrally formed with the fixed portion and a second distal end. The composite beam comprises an insulator having a top surface and at least two side surfaces; a conductor extending away from the fixed portion and surrounding at least a portion of the insulator; and a second conductor positioned adjacent to the top surface of the conductor and extending parallel with the insulator away from the fixed portion. The second conductor is separated from the first conductor to provide a low parasitic conductance of the composite beam.
Abstract:
A sensor having a proximal end and a distal end includes an anchor, a proof mass, a fixed finger, and a movable finger. The anchor is disposed at the proximal end. The proof mass is coupled to the anchor and disposed at a first distance from the anchor. The fixed finger and the movable finger are coupled to the anchor and disposed at a second distance from the anchor at the distal end. The fixed and movable fingers are configured to measure a first capacitance area. A ratio of the first distance over the second distance is between about 0.2 to about 0.6. The ratio is configured to deflect the movable finger at least about 1 μm relative to the fixed finger.
Abstract:
A sensor apparatus includes a base, a tap, a channel, and a gate. The tap is adjacent the base and electrically coupled to the base. The channel is between the tap and the base. The gate is adjacent the channel and electrically coupled to the channel. The gate is separated from the channel by a gap. At least a portion of a charge flow in the channel is substantially parallel or antiparallel to an electric field between the gate and the channel. A triode capacitor system includes a channel region, a gate region, and a processor. The gate region is separated from the channel region by a gap. The processor is coupled to a base contact, a tap contact, and a gate contact and configured to measure a distance of the gap based on a potential difference between the base contact and the tap contact.
Abstract:
A micro-electromechanical system (MEMS) device includes a substrate and a beam suspended relative to a surface of the substrate. The substrate includes a buried insulator layer and a cavity. The beam includes a first portion and a second portion that are separated by an isolation joint. The cavity separates the surface of the substrate from the beam.
Abstract:
A MEMS device formed in a first semiconductor substrate is sealed using a second semiconductor substrate. To achieve this, an Aluminum Germanium structure is formed above the first substrate, and a polysilicon layer is formed above the second substrate. The first substrate is covered with the second substrate so as to cause the polysilicon layer to contact the Aluminum Germanium structure. Thereafter, eutectic bonding is performed between the first and second substrates so as to cause the Aluminum Germanium structure to melt and form an AlGeSi sealant thereby to seal the MEMS device. Optionally, the Germanium Aluminum structure includes, in part, a layer of Germanium overlaying a layer of Aluminum.