Abstract:
A vehicle bumper assembly (12) that includes a first energy absorbing member (22), a second energy absorbing member (24) and a vehicle facia member (26). The first energy absorbing member (22) is made of non-expanded polypropylene and is configured to directly attach to a vehicle body structure (14). The second energy absorbing member (24) is made of expanded polypropylene and is directly attached to a portion of the first energy absorbing member (22) spaced apart from the vehicle body structure (14). The vehicle facia member (26) is shaped and contoured for a predetermined vehicle body style. Further, the vehicle facia member (26) is configured to attach to the vehicle body structure (14). The vehicle facia member (26) covers and at least partially conceals the first energy absorbing member (22) and the second energy absorbing member (24).
Abstract:
Methods, apparatuses, systems, and non-transitory computer readable storage media for generating risk indicators are described. The disclosed technology includes determining a vehicle route of a vehicle and external object routes of external objects. The vehicle route is determined using vehicle route data including a vehicle location and a vehicle destination. The external object routes are determined using external object route data including external object locations and external object destinations. Based on a comparison of the vehicle route data and the external object route data, external object routes that satisfy a proximity criterion are determined. Risk data for the vehicle is generated based on a vehicle state of the vehicle and external object states of the external objects corresponding to the external object routes that satisfy the proximity criterion. In response to determining that the risk data satisfies a risk criterion, at least one risk indicator is generated.
Abstract:
Methods, apparatuses, systems, and non-transitory computer readable storage media for generating solution data for autonomous vehicles to negotiate problem situations have been disclosed. The disclosed technology generates state data associated with a vehicle using sensor data received from the vehicle and from external objects within a vicinity of the vehicle. The state data includes any of a location of the vehicle, a destination of the vehicle, an operational status of the vehicle, and information associated with a vehicle environment. In response to determining that the state data satisfies a state criterion, a determination of solution profile data that matches the state data is made on the basis of a comparison of the state data to the solution profile data. Solution data is generated using the matching solution profile data to transmit the solution data to the vehicle for execution.
Abstract:
Methods and systems for remote support of autonomous operation of vehicles have been disclosed. State indicators are generated by a first state display based on state data from a portion of vehicles assigned to a respective first level control station. A second state display is generated for a second control station and displays state indicators for the state data of the vehicles. A remote support interface including the first state display and image data received from a first vehicle of the vehicles is generated. Instruction data to the first vehicle is transmitted using the remote support interface and based on an indication that the first vehicle needs remote support, the instruction data modifying the autonomous operation of the first vehicle. A workload between the first level control stations is allocated by assigning the vehicles using the state indicators of the second state display.
Abstract:
Methods, apparatuses, and non-transitory computer readable storage media for optimizing driving time based on traffic signal states are described. The disclosed technology includes a vehicle that is able to determine, based on route data, a plurality of distances that correspond to paths between a vehicle location and a destination location for the vehicle. The route data can include a map of a predetermined area that includes the vehicle location and the destination location. The vehicle can receive traffic signal data that includes traffic signal states for a corresponding traffic signals on the paths. The vehicle can determine travel times corresponding to a predetermined portion of the paths based on the distances and the traffic signal states. The vehicle can determine an optimized path between the vehicle location and the destination location based on the path that is determined to have the shortest travel time.
Abstract:
An autonomous vehicle control system includes a sensing system, a remote vehicle determination system and a controller. The sensing system is disposed on a host vehicle and is configured to sense a visual condition of a driver of the host vehicle. The remote vehicle determination system is disposed on the host vehicle, and is configured to determine a position of a remote vehicle in an area adjacent the host vehicle. The controller is configured to control the autonomous vehicle control system to move the host vehicle relative to a lane marker based on the visual condition and the position of a remote vehicle.
Abstract:
An internal-combustion engine is disclosed in which a pair of inlet valves and a pair of outlet valves are provided within the combustion chamber formed in each of a row of cylinders. A first ignition plug is disposed in the cylinder head within a central area of the combustion chamber in plan view. Second and third ignition plugs are disposed in the cylinder head at opposite peripheral portions of the combustion chamber positioned approximately along the first axis direction in plan view, the second and third ignition plugs are arranged so that the discharge electrode portions of the second and third ignition plugs being inclined inwardly of the combustion chamber in opposite directions and are substantially symmetrical relative with the first ignition plug in plan view. A line intersecting the discharge electrode portions of the second and third ignition plugs forms an oblique angle with the direction of the row of cylinders in plan view.