Abstract:
An etch-stop layer is selectively provided between layers of a multiple-layered circuit in a selective manner so as to allow for outgassing of impurities during subsequent fabrication processes. The etch-stop layer is formed over an underlying stud so as to serve as an alignment target during formation of an overlying stud formed in an upper layer. In this manner multiple-layered circuits, for example memory devices, can be fabricated in relatively dense configurations.
Abstract:
PURPOSE: A ferroelectric memory device having an extended plate line and a method for fabricating the same are provided to maximize a contact area between a plate line and an upper electrode and improve an insulating characteristic between the plate line and a main word line. CONSTITUTION: An isolation layer(53) is formed on a semiconductor substrate(51). A plurality of insulated gate electrodes(57) are formed across the isolation layer(53). An active region is divided into one common drain region(61d) and two source regions(61s). A lower interlayer dielectric(74) is deposited on a whole surface of the above structure. A plurality of contact plugs(75) are connected with the source regions(61s). A ferroelectric capacitor(82) is arranged on the whole surface of the above structure. The ferroelectric capacitor(82) includes a lower electrode(77), a ferroelectric layer pattern(79), and an upper electrode(81). An insulating layer pattern(85a) are formed on a gap region between the ferroelectric capacitors(82). A local plate line(87) is formed on the ferroelectric capacitor(82) and the insulating layer pattern(85a). The first and the second upper interlayer dielectric(89,93) are deposited thereon. A main word line(91) is inserted between the first and the second upper interlayer dielectric(89,93). A main plate line(97) is connected with the local plate line(87) through a slit type via hole(95).
Abstract:
게이트 전극에 의하여 자기정렬되는 셀프얼라인 콘택 플러그를 갖춘 반도체 메모리 소자의 제조 공정에서 트랜지스터의 문턱 전압을 조절하기 위한 채널 이온 주입 공정을 포함하는 반도체 메모리 소자의 제조 방법에 관하여 개시한다. 본 발명에 따른 반도체 메모리 소자의 제조 방법에서는 게이트 전극을 형성하기 위한 제1 부분과, 비트 라인 콘택을 형성하기 위한 제2 부분과, 커패시터의 스토리지 노드 콘택을 형성하기 위한 제3 부분을 포함하는 활성 영역이 정의된 반도체 기판에서 상기 제1 부분 및 제2 부분 만을 노출시키도록 상기 반도체 기판 상면을 덮는 마스크 패턴을 이용한다. 본 발명에 따른 반도체 메모리 소자의 제조 방법에서는 게이트 전극을 형성하기 위한 제1 부분과, 비트 라인 콘택을 형성하기 위한 제2 부분과, 커패시터의 스토리지 노드 콘택을 형성하기 위한 제3 부분을 포함하는 활성 영역을 반도체 기판상에 정의한다. 상기 마스크 패턴을 이온 주입 마스크로 하여 상기 반도체 기판의 활성 영역에 제1 도전형의 도판트를 이온 주입하여 상기 제1 부분 및 제2 부분에만 트랜지스터의 문턱 전압 조절을 위한 채널 이온 주입 영역을 형성한다.
Abstract:
PURPOSE: A ferroelectric memory device and a method for forming the same are provided to improve integration and obtain a stable contact resistance of the ferroelectric memory device. CONSTITUTION: A transistor(204) including a source region(206b) and a drain region(206a) is formed on an active region of a substrate(200). The first interlayer dielectric(208) is formed on the substrate(200) and the transistor(204). The first contact holes(210a,210b) are formed in the first interlayer dielectric(208). A bit line(212a) and a buried contact structure(212b) are arranged on the first interlayer dielectric(208). The second interlayer dielectric(216) is formed thereon. A ferroelectric capacitor(226) is formed on the second interlayer dielectric(216). The second contact hole(218) is formed in the second interlayer dielectric(216). An oxygen diffusion barrier is formed on the first interlayer dielectric(208). The third interlayer dielectric(230) is formed on the ferroelectric capacitor(226) and the second interlayer dielectric(216). The first wire(232) is formed on the third interlayer dielectric(230). An insulating layer(234) is formed on the third interlayer dielectric(230). The second wire(238) is formed on the insulating layer(234). A passivation layer is formed on the insulating layer(234) and the second wire(238).
Abstract:
PURPOSE: A semiconductor device having a multi-layered interconnection structure is provided to prevent a short-circuit between a landing pad and a circuit pattern, by forming a step-type contact stud, by forming a pillar-type contact stud in an interlayer dielectric and by forming a conductive pattern for a landing pad on the interlayer dielectric such that the conductive pattern is of a size greater than the line width of the contact stud. CONSTITUTION: The interlayer dielectric is formed on a semiconductor substrate(200). The first contact stud is formed in the interlayer dielectric, in which the line width of an inlet part adjacent to the surface of the interlayer dielectric is greater than that of a contact part adjacent to the substrate. The second stud is formed in the interlayer dielectric, separated from the first contact stud by a predetermined interval.
Abstract:
PURPOSE: A semiconductor device having a bit line landing pad and a borderless contact on a bit line stud having an etch stop layer is provided to guarantee precision of an etch depth, by forming the etch stop layer on the stud of a lower layer such that the etch stop layer has etch selectively different from that of a lower insulation layer. CONSTITUTION: The first stud is formed in the first insulation layer(58). The etch stop layer(68) is formed on the first stud. The second insulation layer is formed on the etch stop layer. The second stud passes through the second insulation layer and the etch stop layer, electrically connected to the first stud. The etch stop layer has a different etch selectivity from that of the second insulation layer.
Abstract:
PURPOSE: A method for fabricating a semiconductor memory device using a mask pattern for implanting channel ions is provided to control a threshold voltage of a transistor by performing a channel ion implantation process. CONSTITUTION: An isolation region(102) is formed on a semiconductor substrate(100). A well and a channel stop layer(106) are formed on a semiconductor substrate(100). An ion implantation mask pattern including an opening is formed on an active region of the semiconductor substrate(100). A channel ion implantation region(122) is formed by implanting p-type dopants into the semiconductor substrate(100). A gate electrode(130) is formed on the active region. A nitride layer spacer(134) is formed at the gate electrode(130) and a sidewall of a silicon nitride layer pattern(132). Source/drain regions(142a,142b) are formed on the active region. A contact plug(150a) connected with the source/drain region(142a) and a contact plug(150b) connected with the source/drain region(142b) are formed on the active region.
Abstract:
PURPOSE: A method for manufacturing a capacitor of a semiconductor device is provided to improve step coverage in a region between a cell region and a core/peripheral region, by maintaining a doped polysilicon layer for a plate electrode near the core/peripheral region. CONSTITUTION: A cell region and a core/peripheral region are defined in a semiconductor substrate(100). A doped polysilicon layer(206,304) for a capacitor plate electrode having a gate line is formed on the entire surface of the cell region and the core/peripheral region. The doped polysiliconlayer in the cell region is etched to form an opening, wherein the inner wall of the opening becomes a plate electrode. After a dielectric layer(300) is formed on the inner wall of the opening, a storage node of a spacer type is formed on the dielectric layer on the inner wall of the opening by a self-aligned method. Therefore, a capacitor composed of the plate electrode, the dielectric layer and the storage node is formed.
Abstract:
PURPOSE: A method for manufacturing a bitline contact of a semiconductor device is provided to form stable metal silicide layers in different regions, by forming a silicon supply layer inside a contact hole before a metal layer for forming the silicide layer is manufactured. CONSTITUTION: A plurality of the first and second transistors having at least a gate electrode(120,140) composed of polysilicon/tungsten silicide are formed on a semiconductor substrate(100) in which a cell array region and a peripheral region are defined. The first interlayer dielectric(220) is formed on the substrate including the plurality of the first and second transistors. A conductive pad is formed among the plurality of the first transistors. The second interlayer dielectric(260) is formed on the first interlayer dielectric, the conductive pad and the first and second transistors. The second interlayer dielectric is etched to form the first, second and third bitline contact holes(280a,280b,280c) exposing the conductive pad, the substrate on both sides of the second transistors and the tungsten silicide layer, respectively. A silicon supply layer(300) is formed in the second interlayer dielectric and the bitline contact hole. A metal layer(320) for forming silicide is deposited and annealed on the silicon supply layer to form a metal silicide layer. A barrier metal layer is formed on the silicide layer. A bitline metal layer is formed on the barrier metal layer.
Abstract:
본 발명은 선택되지 않은 셀(non-selected cell)의 스토리지 노드의 퍼텐셜(potential)에 의한 선택된 셀(selected cell)의 문턱 전압(threshold voltage) 변화를 방지하는 트렌치 격리의 제조 방법 및 그 구조에 관한 것으로, 트렌치 하부면 및 양측벽에 손상층을 제거하기 위한 열산화막이 형성된 후, 트렌치를 완전히 채울 때까지 도핑된 폴리실리콘 내지 고온 융점(high temperature melting point)을 갖는 금속 등의 물질층이 증착 된다. 물질층의 상부 표면이 반도체 기판의 상부 표면 보다 낮아지도록 물질층이 리세스(recess)된 후, 리세스된 부위를 채우도록 트렌치 격리막이 증착 된다. 이때, 후속 공정에서 물질층이 노출되는 것을 방지하기 위해 물질층과 트렌치 격리막 사이에 실리콘 질화막이 형성될 수 있다. 이와 같은 반도체 장치 및 그의 제조 방법에 의해서, 소자격리막 내에 도전 물질을 매립함으로써, 선택되지 않은 셀의 스토리지 노드의 퍼텐셜에 의한 선택된 셀의 문턱 전압 변화를 방지할 수 있다. 또한, 전계투과차단막(electric field penetration shield layer)에 바이어스를 인가하여 셀의 문턱 전압을 조절할 수 있고, 따라서 셀 트랜지스터의 채널 도핑 농도를 증가시키지 않아도 원하는 셀 트랜지스터의 문턱 전압을 유지할 수 있고, 채널의 폭에 대한 문턱 전압의 의존도를 최소화 할 수 있다.