Abstract:
A method and an apparatus for continuous production of porous materials and mixed metal oxides are provided to develop a technology for continuous production of materials including porous materials and mixed metal oxides such that the production process is stable, and temperature and pressure are easily controlled, and develop a reaction system enabling synthesis of such materials. An apparatus for continuous production of porous materials and mixed metal oxides comprises: a pump for continuously supplying reactants into the tubular reactors; tubular reactors(30) that do not have connection parts areas on which a microwave is irradiated; microwave generators(32) for scanning a microwave onto the tubular reactors; and a pressure measuring and controlling device for controlling pressure of the reactors by measuring pressure of gas after separating solid and liquid from a mixture of products. The apparatus further comprises a preheater for preheating reactants continuously supplied by the pump before the reactants are supplied into the tubular reactors. Two or more of the tubular reactors are connected to one another in series or in parallel. The non-microwave irradiated connection parts of the tubular reactors have connection parts on which temperature sensors(33), pressure sensors(35) and ruptures(34) are installed.
Abstract:
Provided is a method for preparing a porous organic-inorganic hybrid material which has a nano-sized micropore and is used to encapsulate a small guest molecule or to separate a large molecule. The method comprises the steps of stirring a metal material and an organic material in the presence of a solvent with a velocity of 50-2,000 rpm for 1-600 min or irradiating an ultrasonic wave of 15,000 Hz to 30 MHz to the mixture for 1-600 min, to prepare a reaction solution where a crystal nucleus is formed; and irradiating a microwave of 1-30 GHz to the obtained reaction solution containing a crystal nucleus at a temperature of 100-250 deg.C. Preferably the organic material is an organic compound capable of coordinating with the metal material.
Abstract:
본 발명은 텅스텐산화물이 치환된 티타늄산화물 친수성 박막의 제조방법에 관한 것으로, 구체적으로 10 중량% 이하의 텅스텐 할로겐화물과 티타늄 알콕사이드로 이루어진 혼합물을 킬레이팅제에 용해시켜 졸 상태의 텅스텐-티타늄 전구체 용액을 제조하는 단계(단계 1), 상기 졸 용액을 기질의 표면 위에 코팅하는 단계(단계 2), 상기 코팅된 기질을 350∼500℃에서 열처리하여 무정형 WO 3 -TiO 2 복합산화물을 형성시키는 단계(단계 3)를 포함하는 것으로 이루어진 친수성 박막의 제조방법에 관한 것이다. 본 발명의 제조방법은 킬레이팅제를 이용함으로써 가수분해 속도를 조절하고, 열처리 온도를 낮추어 수십 나노미터의 입자 크기를 갖는 균일한 복합산화물 박막을 제조할 수 있으며, 낮은 온도에서 소결함으로써 유리 또는 세라믹 등 다양한 기질 표면에 코팅할 수 있을 뿐만 아니라 저렴한 가격으로 제조할 수 있다. 또한 상기 제조방법의 의해 제조된 박막은 자외선 조사 후 장시간 동안 친수성을 유지할 수 있다. 친수성, 초친수성, WO3, TiO2, 복합산화물, 안티포깅
Abstract:
본 발명은 흡착제의 제조방법 및 이를 이용한 기체의 정제방법에 관한 것으로, 상세하게는 금속 전구체를 무기 담체에 담지할 때 폴리히드록시 알콜과 킬레이팅제를 추가한 후 가열하고, 건조, 소성 및 환원하여 금속 이온이 금속 상태로 전환된 흡착제의 제조방법 및 이를 이용한 기체의 정제방법에 관한 것이다. 본 발명에 따른 흡착제의 제조방법은 금속 입자 크기를 감소시키고 금속의 분산도를 향상시킴으로써, 불활성 기체에 포함된 산소, 이산화탄소 및 수분 등의 불순물을 한번에 고순도로 정제하는데 효율적으로 이용할 수 있다.
Abstract:
본 발명은 나노 세공을 갖는 VSB-5 분자체의 제조방법에 관한 것으로서, 더욱 상세하게는 인화합물과 니켈화합물로 구성되는 원료물질에 종래의 필수요소인 주형물질을 배제하고 pH 조절제로서 저가이면서 손쉽게 구할 수 있는 무기염기 또는 모노아민을 선택 혼입하여 결정화하므로써 공정의 단순화가 가능하고 값싸고 효율적인 방법으로 수소저장물질, 촉매, 촉매지지체 및 흡착제 등의 분야에 널리 이용 가능한 나노 세공을 갖는 VSB-5 분자체를 제조하는 방법에 관한 것이다.
Abstract:
PURPOSE: To provide a method for preparing a VSB-5 molecular sieve, which is able to prepare the VSB-5 molecular sieve having good physical properties through an economic and efficient method using an inexpensive inorganic base or mono-amine. CONSTITUTION: In the method for preparing nanoporous VSB-5 molecular sieve by crystallizing a nickel compound and a phosphorous compound using a base, an inorganic base or a mono-amine is used as the base, and the crystallization is performed under pH of 7.0-12.0 and at the temperature of 50-350 deg.C.
Abstract:
PURPOSE: Provided are a selective hydrogenation catalyst and a selective hydrogenation process of diolefin compound using the catalyst. The above catalyst is tetragonal Ni/Zr type and is used in the selective hydrogenation of diolefin compounds that are contained in the carbohydrate mixtures into mono-olefin compounds. CONSTITUTION: The preparation method of the above catalyst comprises: 0.1-5wt.% (based on the hydrate) of Ni alone or having 0.1-5mol.% (based on Zr carrier) of a cocatalyst selected from Pd, Pt, Ag, Cu, Mo and B and its carrier of Zr alone or modified by one metal chosen from Ca, lanthanide metals such as Se and La, IIIB group metal(silicone) or IVB group metal(Al). The above selective hydrogenation is conducted in the temperature range of 80 to 250°C at a pressure of 1 to 12 atm. and at space velocity of 4 to 12/h (based on the volume of liquid reactant).
Abstract:
PURPOSE: Provided is a direct preparation method of hydrogen peroxide, which is characterized in that the hydrogen carrier quinone and its derivatives are fixed to the channels of zeolite by anchoring and grafting method and the product is made in aqueous solution. Usual process uses solvent dissolving quinone and hydroquinone and in the above process the quinones are fixed to the zeolite more than 2 times than the usual process, making the method improved in the stability and reactivity of the catalyst. CONSTITUTION: The method includes the steps of: making the catalyst by anchoring or grafting quinone or its derivatives into the zeolite which is ion-exchanged with VIII group transition metals and carries them; and directly synthesizing hydrogen peroxide at 0-90deg.C by introducing reducing agent and oxygen gas. The above anchoring and grafting is conducted by using as anchoring agent tetrahydrofuran and dicyclohexylcarbodiimide and pre-grafting to zeolite with 3-aminopropyltrimethoxysilane and trimethoxysilylpropyldiethylenetriamine. The above zeolite is selected from Y, Beta, L or MCM-41 structure and Si/Al ratio is 1-160. The cationic form of zeolite is selected from Na, K and H while VIII group transition metal is chosen from Rd, Pt, Rh, Ir, Fe, Cu and Ni. The reducing agent is selected from hydrogen, ammonia and alcohol. The catalyst is washed with benzene, alcohol and acetone, and the acid is added to the above aqueous solution, the acid being chosen from 0.001-1N sulfuric acid, acetic acid and hydrochloric acid.